
mplstereonet Documentation
Release 0.6-dev

Joe Kington

Apr 19, 2020

Contents

1 Install 3

2 Basic Usage 5

3 Density Contouring 7

4 Utilities 11

5 References 13

6 Examples 15
6.1 Examples . 15

7 Detailed Documentation 47
7.1 mplstereonet Package . 47

Bibliography 69

Python Module Index 71

Index 73

i

ii

mplstereonet Documentation, Release 0.6-dev

mplstereonet provides lower-hemisphere equal-area and equal-angle stereonets for matplotlib.

Contents 1

https://github.com/joferkington/mplstereonet/blob/master/examples/equal_area_equal_angle_comparison.py

mplstereonet Documentation, Release 0.6-dev

2 Contents

CHAPTER 1

Install

mplstereonet can be installed from PyPi using pip by:

pip install mplstereonet

Alternatively, you can download the source and install locally using (from the main directory of the repository):

python setup.py install

If you’re planning on developing mplstereonet or would like to experiment with making local changes, consider
setting up a development installation so that your changes are reflected when you import the package:

python setup.py develop

3

mplstereonet Documentation, Release 0.6-dev

4 Chapter 1. Install

CHAPTER 2

Basic Usage

In most cases, you’ll want to import mplstereonet and then make an axes with
projection="stereonet" (By default, this is an equal-area stereonet). Alternately, you can use
mplstereonet.subplots, which functions identically to matplotlib.pyplot.subplots, but cre-
ates stereonet axes.

As an example:

import matplotlib.pyplot as plt
import mplstereonet

fig = plt.figure()
ax = fig.add_subplot(111, projection='stereonet')

strike, dip = 315, 30
ax.plane(strike, dip, 'g-', linewidth=2)
ax.pole(strike, dip, 'g^', markersize=18)
ax.rake(strike, dip, -25)
ax.grid()

plt.show()

5

mplstereonet Documentation, Release 0.6-dev

Planes, lines, poles, and rakes can be plotted using axes methods (e.g. ax.line(plunge, bearing) or ax.
rake(strike, dip, rake_angle)).

All planar measurements are expected to follow the right-hand-rule to indicate dip direction. As an example, 315/30S
would be 135/30 following the right-hand rule.

6 Chapter 2. Basic Usage

https://github.com/joferkington/mplstereonet/blob/master/examples/basic.py

CHAPTER 3

Density Contouring

mplstereonet also provides a few different methods of producing contoured orientation density diagrams.

The ax.density_contour and ax.density_contourf axes methods provide density contour lines and filled
density contours, respectively. “Raw” density grids can be produced with the mplstereonet.density_grid
function.

As a basic example:

import matplotlib.pyplot as plt
import numpy as np
import mplstereonet

fig, ax = mplstereonet.subplots()

strike, dip = 90, 80
num = 10
strikes = strike + 10 * np.random.randn(num)
dips = dip + 10 * np.random.randn(num)

cax = ax.density_contourf(strikes, dips, measurement='poles')

ax.pole(strikes, dips)
ax.grid(True)
fig.colorbar(cax)

plt.show()

7

mplstereonet Documentation, Release 0.6-dev

By default, a modified Kamb method with exponential smoothing [Vollmer1995] is used to estimate the orientation
density distribution. Other methods (such as the “traditional” Kamb [Kamb1956] and “Schmidt” (a.k.a. 1%) methods)
are available as well. The method and expected count (in standard deviations) can be controlled by the method and
sigma keyword arguments, respectively.

8 Chapter 3. Density Contouring

https://github.com/joferkington/mplstereonet/blob/master/examples/contouring.py

mplstereonet Documentation, Release 0.6-dev

9

https://github.com/joferkington/mplstereonet/blob/master/examples/contour_angelier_data.py

mplstereonet Documentation, Release 0.6-dev

10 Chapter 3. Density Contouring

CHAPTER 4

Utilities

mplstereonet also includes a number of utilities to parse structural measurements in either quadrant or azimuth
form such that they follow the right-hand-rule.

For an example, see parsing_example.py:

Parse quadrant azimuth measurements
"N30E" --> 30.0
"E30N" --> 60.0
"W10S" --> 260.0
"N 10 W" --> 350.0

Parse quadrant strike/dip measurements.
Note that the output follows the right-hand-rule.
"215/10" --> Strike: 215.0, Dip: 10.0
"215/10E" --> Strike: 35.0, Dip: 10.0
"215/10NW" --> Strike: 215.0, Dip: 10.0
"N30E/45NW" --> Strike: 210.0, Dip: 45.0
"E10N 20 N" --> Strike: 260.0, Dip: 20.0
"W30N/46.7 S" --> Strike: 120.0, Dip: 46.7

Similarly, you can parse rake measurements that don't follow the RHR.
"N30E/45NW 10NE" --> Strike: 210.0, Dip: 45.0, Rake: 170.0
"210 45 30N" --> Strike: 210.0, Dip: 45.0, Rake: 150.0
"N30E/45NW raking 10SW" --> Strike: 210.0, Dip: 45.0, Rake: 10.0

Additionally, you can find plane intersections and make other calculations by combining utility functions. See
plane_intersection.py and parse_anglier_data.py for examples.

11

https://github.com/joferkington/mplstereonet/blob/master/examples/parsing_example.py
https://github.com/joferkington/mplstereonet/blob/master/examples/plane_intersection.py
https://github.com/joferkington/mplstereonet/blob/master/examples/parse_angelier_data.py

mplstereonet Documentation, Release 0.6-dev

12 Chapter 4. Utilities

CHAPTER 5

References

13

mplstereonet Documentation, Release 0.6-dev

14 Chapter 5. References

CHAPTER 6

Examples

6.1 Examples

6.1.1 axial_plane.py

Illustrates fitting an axial plane to two clusters of dip measurements.

In this case, we’re faking it by using Anglier’s fault orientation data, but pretend these were bedding dips in two limbs
of a fold instead of fault orientations.

The steps mimic what you’d do graphically:

1. Find the centers of the two modes of the bedding measurements

2. Fit a girdle to them to find the plunge axis of the fold

3. Find the midpoint along that girdle between the two centers

4. The axial plane will be the girdle that fits the midpoint and plunge axis of the fold.

import matplotlib.pyplot as plt
import mplstereonet

import parse_angelier_data

Load data from Angelier, 1979
strike, dip, rake = parse_angelier_data.load()

Plot the raw data and contour it:
fig, ax = mplstereonet.subplots()
ax.density_contour(strike, dip, rake, measurement='rakes', cmap='gist_earth',

sigma=1.5)
ax.rake(strike, dip, rake, marker='.', color='black')

Find the two modes
centers = mplstereonet.kmeans(strike, dip, rake, num=2, measurement='rakes')

(continues on next page)

15

mplstereonet Documentation, Release 0.6-dev

(continued from previous page)

strike_cent, dip_cent = mplstereonet.geographic2pole(*zip(*centers))
ax.pole(strike_cent, dip_cent, 'ro', ms=12)

Fit a girdle to the two modes
The pole of this plane will be the plunge of the fold axis
axis_s, axis_d = mplstereonet.fit_girdle(*zip(*centers), measurement='radians')
ax.plane(axis_s, axis_d, color='green')
ax.pole(axis_s, axis_d, color='green', marker='o', ms=15)

Now we'll find the midpoint. We could project the centers as rakes on the
plane we just fit, but it's easier to get their mean vector instead.
mid, _ = mplstereonet.find_mean_vector(*zip(*centers), measurement='radians')
midx, midy = mplstereonet.line(*mid)

Now let's find the axial plane by fitting another girdle to the midpoint
and the pole of the plunge axis.
xp, yp = mplstereonet.pole(axis_s, axis_d)

x, y = [xp, midx], [yp, midy]
axial_s, axial_dip = mplstereonet.fit_girdle(x, y, measurement='radians')

ax.plane(axial_s, axial_dip, color='lightblue', lw=3)

plt.show()

16 Chapter 6. Examples

mplstereonet Documentation, Release 0.6-dev

Result

6.1.2 basic.py

As an example of basic functionality, let’s plot a plane, the pole to the plane, and a rake along the plane.

import matplotlib.pyplot as plt
import mplstereonet

fig = plt.figure()
ax = fig.add_subplot(111, projection='stereonet')

Measurements follow the right-hand-rule to indicate dip direction
strike, dip = 315, 30

ax.plane(strike, dip, 'g-', linewidth=2)
ax.pole(strike, dip, 'g^', markersize=18)
ax.rake(strike, dip, -25)

ax.grid()

plt.show()

6.1. Examples 17

mplstereonet Documentation, Release 0.6-dev

Result

6.1.3 cone_aka_small_circle.py

Demonstrates plotting small circles (cones) on a stereonet.

import matplotlib.pyplot as plt
import numpy as np
import mplstereonet

Generate some scattered strikes and dips
num = 100
strike0, dip0 = 315, 85
strike = np.random.normal(strike0, 5, num)
dip = np.random.normal(dip0, 5, num)

Convert the strike/dip of the pole to plane to a plunge/bearing
plunge, bearing = mplstereonet.stereonet_math.pole2plunge_bearing(strike0, dip0)

fig, ax = mplstereonet.subplots()
ax.pole(strike, dip, color='k')

We want the plunge and bearing repeated 3 times for three circles...
plunge, bearing = 3 * list(plunge), 3 * list(bearing)

(continues on next page)

18 Chapter 6. Examples

mplstereonet Documentation, Release 0.6-dev

(continued from previous page)

ax.cone(plunge, bearing, [5, 10, 15], facecolor='', zorder=4, linewidth=2,
edgecolors=['red', 'green', 'blue'])

plt.show()

Result

6.1.4 contour_angelier_data.py

Reproduce Figure 5 from Vollmer, 1995 to illustrate different density contouring methods.

import matplotlib.pyplot as plt
import mplstereonet

import parse_angelier_data

def plot(ax, strike, dip, rake, **kwargs):
ax.rake(strike, dip, rake, 'ko', markersize=2)
ax.density_contour(strike, dip, rake, measurement='rakes', linewidths=1,

cmap='jet', **kwargs)

(continues on next page)

6.1. Examples 19

mplstereonet Documentation, Release 0.6-dev

(continued from previous page)

Load data from Angelier, 1979
strike, dip, rake = parse_angelier_data.load()

Setup a subplot grid
fig, axes = mplstereonet.subplots(nrows=3, ncols=4)

Hide azimuth tick labels
for ax in axes.flat:

ax.set_azimuth_ticks([])

contours = [range(2, 18, 2), range(1, 21, 2), range(1, 22, 2)]

"Standard" Kamb contouring with different confidence levels.
for sigma, ax, contour in zip([3, 2, 1], axes[:, 0], contours):

We're reducing the gridsize to more closely match a traditional
hand-contouring grid, similar to Kamb's original work and Vollmer's
Figure 5. `gridsize=10` produces a 10x10 grid of density estimates.
plot(ax, strike, dip, rake, method='kamb', sigma=sigma,

levels=contour, gridsize=10)

Kamb contouring with inverse-linear smoothing (after Vollmer, 1995)
for sigma, ax, contour in zip([3, 2, 1], axes[:, 1], contours):

plot(ax, strike, dip, rake, method='linear_kamb', sigma=sigma,
levels=contour)

template = r'$E={}\sigma$ Contours: ${}\sigma,{}\sigma,\ldots$'
ax.set_xlabel(template.format(sigma, *contour[:2]))

Kamb contouring with exponential smoothing (after Vollmer, 1995)
for sigma, ax, contour in zip([3, 2, 1], axes[:, 2], contours):

plot(ax, strike, dip, rake, method='exponential_kamb', sigma=sigma,
levels=contour)

Title the different methods
methods = ['Kamb', 'Linear\nSmoothing', 'Exponential\nSmoothing']
for ax, title in zip(axes[0, :], methods):

ax.set_title(title)

Hide top-right axis... (Need to implement Diggle & Fisher's method)
axes[0, -1].set_visible(False)

Schmidt contouring (a.k.a. 1%)
plot(axes[1, -1], strike, dip, rake, method='schmidt', gridsize=25,

levels=range(3, 20, 3))
axes[1, -1].set_title('Schmidt')
axes[1, -1].set_xlabel(r'Contours: $3\%,6\%,\ldots$')

Raw data.
axes[-1, -1].set_azimuth_ticks([])
axes[-1, -1].rake(strike, dip, rake, 'ko', markersize=2)
axes[-1, -1].set_xlabel('N={}'.format(len(strike)))

plt.show()

20 Chapter 6. Examples

mplstereonet Documentation, Release 0.6-dev

Result

6.1.5 contour_normal_vectors.py

Illustrates plotting normal vectors in “world” coordinates as orientations on a stereonet.

import numpy as np
import matplotlib.pyplot as plt
import mplstereonet

Load in a series of normal vectors from a triangulated normal fault surface
normals = np.loadtxt('normal_vectors.txt')
x, y, z = normals.T

Convert these to plunge/bearings for plotting.
Alternately, we could use xyz2stereonet (it doesn't correct for bi-directional
measurements, however) or vector2pole.
plunge, bearing = mplstereonet.vector2plunge_bearing(x, y, z)

Set up the figure
fig = plt.figure()
ax = fig.add_subplot(111, projection='stereonet')

Make a density contour plot of the orientations
(continues on next page)

6.1. Examples 21

mplstereonet Documentation, Release 0.6-dev

(continued from previous page)

ax.density_contourf(plunge, bearing, measurement='lines')

Plot the vectors as points on the stereonet.
ax.line(plunge, bearing, marker='o', color='black')

plt.show()

Result

6.1.6 contouring.py

A basic example of producing a density contour plot of poles to planes.

import matplotlib.pyplot as plt
import numpy as np
import mplstereonet

Fix random seed so that output is consistent
np.random.seed(1977)

fig, ax = mplstereonet.subplots()

(continues on next page)

22 Chapter 6. Examples

mplstereonet Documentation, Release 0.6-dev

(continued from previous page)

Generate a random scatter of planes around the given plane
All measurements follow the right-hand-rule to indicate dip direction
strike, dip = 90, 80
num = 10
strikes = strike + 10 * np.random.randn(num)
dips = dip + 10 * np.random.randn(num)

Create filled contours of the poles of the generated planes...
By default this uses a modified Kamb contouring technique with exponential
smoothing (See Vollmer, 1995)
cax = ax.density_contourf(strikes, dips, measurement='poles')

Plot the poles as points on top of the contours
ax.pole(strikes, dips)

Turn on a grid and add a colorbar
ax.grid(True)
fig.colorbar(cax)
plt.show()

Result

6.1. Examples 23

mplstereonet Documentation, Release 0.6-dev

6.1.7 cross_section_plane.py

In this example two planes are plottet as great circles and poles. The planes are given as dip-direction/dip and converted
to strike/dip. The strikes and dips are passed to the ‘mplstereonet.fit_girdle()’ function that calculates the best fitting
plane for the poles of the planes. The resulting plane is the optimal cross-section plane for this structure. The pole
of the resulting plane would correspond to the intersection-linear when looking at schistosities or the fold-axis when
looking at fold-hinges.

import matplotlib.pyplot as plt
import numpy as np
import mplstereonet

fig, ax = mplstereonet.subplots()

dip_directions = [100, 200]
dips = [30, 40]
strikes = np.array(dip_directions) - 90

ax.pole(strikes, dips, "bo")
ax.plane(strikes, dips, color='black', lw=1)

fit_strike, fit_dip = mplstereonet.fit_girdle(strikes, dips)

ax.plane(fit_strike, fit_dip, color='red', lw=1)
ax.pole(fit_strike, fit_dip, marker='o', color='red', markersize=5)

plt.show()

24 Chapter 6. Examples

mplstereonet Documentation, Release 0.6-dev

Result

6.1.8 equal_area_equal_angle_comparison.py

A quick visual comparison of equal area vs. equal angle nets.

import matplotlib.pyplot as plt
import mplstereonet

fig = plt.figure()

Make an "equal area" (a.k.a. "Schmidt") stereonet
(Lambert Azimuthal Equal Area Projection)
ax1 = fig.add_subplot(1,2,1, projection='equal_area_stereonet')

Make an "equal angle" (a.k.a. "Wulff" or "True") stereonet
(Stereographic projection)
ax2 = fig.add_subplot(1,2,2, projection='equal_angle_stereonet')

Plot the same thing on both
for ax in [ax1, ax2]:

ax.grid(True)
ax.set_azimuth_ticklabels([])
ax.plane(315, 20)

(continues on next page)

6.1. Examples 25

mplstereonet Documentation, Release 0.6-dev

(continued from previous page)

ax.line([20, 30, 40], [110, 265, 170])

ax1.set_title('Equal Area (a.k.a. "Schmidt")')
ax2.set_title('Equal Angle (a.k.a. "Wulff")')

Make the subplots fit a bit more compactly (purely cosmetic)
fig.subplots_adjust(hspace=0, wspace=0.05, left=0.01, bottom=0.1, right=0.99)

fig.suptitle('Comparison of Equal Area and Equal Angle Stereonets\n'
'Same Data Plotted on Both', y=0.1)

plt.show()

Result

6.1.9 fault_slip_plot.py

Illustrates two different methods of plotting fault slip data.

A fault-and-striae diagram is the traditional method. The tangent-lineation diagram follows Twiss & Unruh, 1988
(this style was originally introduced by Goldstein & Marshak, 1988 and also by Hoeppener, 1955, but both used the
opposite convention for arrow direction).

26 Chapter 6. Examples

mplstereonet Documentation, Release 0.6-dev

import matplotlib.pyplot as plt
import numpy as np
import mplstereonet

import parse_angelier_data

def main():
Load data from Angelier, 1979
strikes, dips, rakes = parse_angelier_data.load()

params = dict(projection='stereonet', azimuth_ticks=[])
fig, (ax1, ax2) = plt.subplots(ncols=2, subplot_kw=params)

fault_and_striae_plot(ax1, strikes, dips, rakes)
ax1.set_title('Fault-and-Striae Diagram')
ax1.set_xlabel('Lineation direction plotted\nat rake location on plane')

tangent_lineation_plot(ax2, strikes, dips, rakes)
ax2.set_title('Tangent Lineation Diagram')
ax2.set_xlabel('Lineation direction plotted\nat pole location of plane')

fig.suptitle('Fault-slip data from Angelier, 1979', y=0.05)
fig.tight_layout()

plt.show()

def fault_and_striae_plot(ax, strikes, dips, rakes):
"""Makes a fault-and-striae plot (a.k.a. "Ball of String") for normal faults
with the given strikes, dips, and rakes."""
Plot the planes
lines = ax.plane(strikes, dips, 'k-', lw=0.5)

Calculate the position of the rake of the lineations, but don't plot yet
x, y = mplstereonet.rake(strikes, dips, rakes)

Calculate the direction the arrows should point
These are all normal faults, so the arrows point away from the center
For thrusts, it would just be u, v = -x/mag, -y/mag
mag = np.hypot(x, y)
u, v = x / mag, y / mag

Plot the arrows at the rake locations...
arrows = ax.quiver(x, y, u, v, width=1, headwidth=4, units='dots')
return lines, arrows

def tangent_lineation_plot(ax, strikes, dips, rakes):
"""Makes a tangent lineation plot for normal faults with the given strikes,
dips, and rakes."""
Calculate the position of the rake of the lineations, but don't plot yet
rake_x, rake_y = mplstereonet.rake(strikes, dips, rakes)

Calculate the direction the arrows should point
These are all normal faults, so the arrows point away from the center
Because we're plotting at the pole location, however, we need to flip this
from what we plotted with the "ball of string" plot.
mag = np.hypot(rake_x, rake_y)
u, v = -rake_x / mag, -rake_y / mag

(continues on next page)

6.1. Examples 27

mplstereonet Documentation, Release 0.6-dev

(continued from previous page)

Calculate the position of the poles
pole_x, pole_y = mplstereonet.pole(strikes, dips)

Plot the arrows centered on the pole locations...
arrows = ax.quiver(pole_x, pole_y, u, v, width=1, headwidth=4, units='dots',

pivot='middle')
return arrows

if __name__ == '__main__':
main()

Result

6.1.10 fisher_stats.py

This example shows how the Fisher statistics can be computed and displayed.

Based on example 5.21 and example 5.23 in [Fisher1993].

28 Chapter 6. Examples

mplstereonet Documentation, Release 0.6-dev

Data in: Table B2 (page 279)
Mean Vector: 144.2/57.2 (page 130)
K-Value: 109 (page 130)
Fisher-Angle: 2.7 deg. (page 132)

Reference

import matplotlib.pyplot as plt
import mplstereonet as mpl

decl = [122.5, 130.5, 132.5, 148.5, 140.0, 133.0, 157.5, 153.0, 140.0, 147.5,
142.0, 163.5, 141.0, 156.0, 139.5, 153.5, 151.5, 147.5, 141.0, 143.5,
131.5, 147.5, 147.0, 149.0, 144.0, 139.5]

incl = [55.5, 58.0, 44.0, 56.0, 63.0, 64.5, 53.0, 44.5, 61.5, 54.5, 51.0, 56.0,
59.5, 56.5, 54.0, 47.5, 61.0, 58.5, 57.0, 67.5, 62.5, 63.5, 55.5, 62.0,
53.5, 58.0]

confidence = 95

fig = plt.figure()
ax = fig.add_subplot(111, projection='stereonet')
ax.line(incl, decl, color="black", markersize=2)

vector, stats = mpl.find_fisher_stats(incl, decl, conf=confidence)

template = (u"Mean Vector P/B: {plunge:0.0f}\u00B0/{bearing:0.0f}\u00B0\n"
"Confidence: {conf}%\n"
u"Fisher Angle: {fisher:0.2f}\u00B0\n"
u"R-Value {r:0.3f}\n"
"K-Value: {k:0.2f}")

label = template.format(plunge=vector[0], bearing=vector[1], conf=confidence,
r=stats[0], fisher=stats[1], k=stats[2])

ax.line(vector[0], vector[1], color="red", label=label)
ax.cone(vector[0], vector[1], stats[1], facecolor="None", edgecolor="red")

ax.legend(bbox_to_anchor=(1.1, 1.1), numpoints=1)
plt.show()

6.1. Examples 29

mplstereonet Documentation, Release 0.6-dev

Result

6.1.11 fit_girdle_example.py

Illustrates fitting a plane to a “gridle” distribution using fit_girdle.

This example simulates finding the plunge and bearing of a cylindrical fold axis from strike/dip measurements of
bedding in the fold limbs.

import numpy as np
import matplotlib.pyplot as plt
import mplstereonet
np.random.seed(1)

Generate a random girdle distribution from the plunge/bearing of a fold hinge
In the end, we'll have strikes and dips as measured from bedding in the fold.
strike and *dip* below would normally be your input.
num_points = 200
real_bearing, real_plunge = 300, 5
s, d = mplstereonet.plunge_bearing2pole(real_plunge, real_bearing)
lon, lat = mplstereonet.plane(s, d, segments=num_points)
lon += np.random.normal(0, np.radians(15), lon.shape)
lat += np.random.normal(0, np.radians(15), lat.shape)
strike, dip = mplstereonet.geographic2pole(lon, lat)

(continues on next page)

30 Chapter 6. Examples

mplstereonet Documentation, Release 0.6-dev

(continued from previous page)

Plot the raw data and contour it:
fig, ax = mplstereonet.subplots()
ax.density_contourf(strike, dip, cmap='gist_earth')
ax.density_contour(strike, dip, colors='black')
ax.pole(strike, dip, marker='.', color='black')

Fit a plane to the girdle of the distribution and display it.
fit_strike, fit_dip = mplstereonet.fit_girdle(strike, dip)
ax.plane(fit_strike, fit_dip, color='red', lw=2)
ax.pole(fit_strike, fit_dip, marker='o', color='red', markersize=14)

Add some annotation of the result
lon, lat = mplstereonet.pole(fit_strike, fit_dip)
(plunge,), (bearing,) = mplstereonet.pole2plunge_bearing(fit_strike, fit_dip)
template = u'P/B of Fold Axis\n{:02.0f}\u00b0/{:03.0f}\u00b0'
ax.annotate(template.format(plunge, bearing), ha='center', va='bottom',

xy=(lon, lat), xytext=(-50, 20), textcoords='offset points',
arrowprops=dict(arrowstyle='-|>', facecolor='black'))

plt.show()

Result

6.1. Examples 31

mplstereonet Documentation, Release 0.6-dev

6.1.12 kmeans_example.py

Illustrates finding the average strike and dip of two conjugate sets of faults.

This uses a kmeans approach modified to work with bidirectional orientation measurements in 3D (mplstereonet.
kmeans).

import matplotlib.pyplot as plt
import mplstereonet

import parse_angelier_data

Load data from Angelier, 1979
strike, dip, rake = parse_angelier_data.load()

Plot the raw data and contour it:
fig, ax = mplstereonet.subplots()
#ax.density_contourf(strike, dip, rake, measurement='rakes', cmap='gist_earth',
sigma=1.5)
ax.density_contour(strike, dip, rake, measurement='rakes', cmap='gist_earth',

sigma=1.5)
ax.rake(strike, dip, rake, marker='.', color='black')

Find the two modes
centers = mplstereonet.kmeans(strike, dip, rake, num=2, measurement='rakes')
strike_cent, dip_cent = mplstereonet.geographic2pole(*zip(*centers))
ax.pole(strike_cent, dip_cent, 'ro', ms=12)

Label the modes
for (x0, y0) in centers:

s, d = mplstereonet.geographic2pole(x0, y0)
x, y = mplstereonet.pole(s, d) # Otherwise, we may get the antipode...

if x > 0:
kwargs = dict(xytext=(40, -40), ha='left')

else:
kwargs = dict(xytext=(-40, 40), ha='right')

ax.annotate('{:03.0f}/{:03.0f}'.format(s[0], d[0]), xy=(x, y),
xycoords='data', textcoords='offset points',
arrowprops=dict(arrowstyle='->', connectionstyle='angle3'),

**kwargs)

ax.set_title('Strike/dip of conjugate fault sets', y=1.07)

plt.show()

32 Chapter 6. Examples

mplstereonet Documentation, Release 0.6-dev

Result

6.1.13 multiple_planes.py

plane, rake, line, etc all allow plotting of multiple measurements.

import matplotlib.pyplot as plt
import mplstereonet

Make a figure with a single stereonet axes
fig, ax = mplstereonet.subplots()

These follow the right hand rule to indicate dip direction
strikes = [22, 317, 170, 220]
dips = [10, 20, 30, 40]

Plot the planes.
ax.plane(strikes, dips)

Make only a single "N" azimuth tick label.
ax.set_azimuth_ticks([0], labels=['N'])

plt.show()

6.1. Examples 33

mplstereonet Documentation, Release 0.6-dev

Result

6.1.14 parse_angelier_data.py

This is meant to serve as an example of slightly more complex parsing of orientation measurements.

Angelier, 1979’s seminal paper on paleostress determination includes a table of slickenslide measurements from nor-
mal faults.

However, some of the measurements are rakes, while others are strike/dip and an azimuth of the slickenslides (“Rake”
measurements without a direction letter are actually azimuthal measurements.).

Furthermore, the measurements do not follow the right-hand-rule for indicating dip direction of a plane and they
indicate rake direction using a directional letter.

To unify the measurements for plotting, etc, we need to parse all of the measurements, and convert the azimuth
measurements to rakes.

import os
import matplotlib.pyplot as plt
import mplstereonet

def main():
strike, dip, rake = load()

(continues on next page)

34 Chapter 6. Examples

mplstereonet Documentation, Release 0.6-dev

(continued from previous page)

Plot the data.
fig = plt.figure()
ax = fig.add_subplot(111, projection='stereonet')
ax.rake(strike, dip, rake, 'ro')
plt.show()

def load():
"""Read data from a text file on disk."""
Get the data file relative to this file's location...
datadir = os.path.dirname(__file__)
filename = os.path.join(datadir, 'angelier_data.txt')

data = []
with open(filename, 'r') as infile:

for line in infile:
Skip comments
if line.startswith('#'):

continue

First column: strike, second: dip, third: rake.
strike, dip, rake = line.strip().split()

if rake[-1].isalpha():
If there's a directional letter on the rake column, parse it
normally.
strike, dip, rake = mplstereonet.parse_rake(strike, dip, rake)

else:
Otherwise, it's actually an azimuthal measurement of the
slickenslide directions, so we need to convert it to a rake.
strike, dip = mplstereonet.parse_strike_dip(strike, dip)
azimuth = float(rake)
rake = mplstereonet.azimuth2rake(strike, dip, azimuth)

data.append([strike, dip, rake])

Separate the columns back out
strike, dip, rake = zip(*data)
return strike, dip, rake

if __name__ == '__main__':
main()

6.1. Examples 35

mplstereonet Documentation, Release 0.6-dev

Result

6.1.15 parsing_example.py

Basic quadrant, strike/dip, and rake parsing.

mplstereonet expects measurements to follow the “right-hand-rule” (RHR) to indicate dip direction.

If you have a set of measurements that don’t necessarily follow the RHR, there are a number of parsing and standard-
ization functions in mplstereonet to correct for this.

import mplstereonet

print('Parse quadrant azimuth measurements')
for original in ['N30E', 'E30N', 'W10S', 'N 10 W']:

azi = mplstereonet.parse_quadrant_measurement(original)
print('"{}" --> {:.1f}'.format(original, azi))

print('\nParse quadrant strike/dip measurements.')
print('Note that the output follows the right-hand-rule.')

def parse_sd(original, seperator):
strike, dip = mplstereonet.parse_strike_dip(*original.split(seperator))
print('"{}" --> Strike: {:.1f}, Dip: {:.1f}'.format(original, strike, dip))

(continues on next page)

36 Chapter 6. Examples

mplstereonet Documentation, Release 0.6-dev

(continued from previous page)

parse_sd('215/10', '/')
parse_sd('215/10E', '/')
parse_sd('215/10NW', '/')
parse_sd('N30E/45NW', '/')
parse_sd('E10N\t20 N', '\t')
parse_sd('W30N/46.7 S', '/')

print("\nSimilarly, you can parse rake measurements that don't follow the RHR.")

def split_rake(original, sep1=None, sep2=None):
components = original.split(sep1)
if len(components) == 3:

return components
strike, rest = components
dip, rake = rest.split(sep2)
return strike, dip, rake

def display_rake(original, sep1, sep2=None):
components = split_rake(original, sep1, sep2)
strike, dip, rake = mplstereonet.parse_rake(*components)
template = '"{}" --> Strike: {:.1f}, Dip: {:.1f}, Rake: {:.1f}'
print(template.format(original, strike, dip, rake))

original = 'N30E/45NW 10NE'
display_rake(original, '/')

original = '210 45\t30N'
display_rake(original, None)

original = 'N30E/45NW raking 10SW'
display_rake(original, '/', 'raking')

Result

Parse quadrant azimuth measurements
"N30E" --> 30.0
"E30N" --> 60.0
"W10S" --> 260.0
"N 10 W" --> 350.0

Parse quadrant strike/dip measurements.
Note that the output follows the right-hand-rule.
"215/10" --> Strike: 215.0, Dip: 10.0
"215/10E" --> Strike: 35.0, Dip: 10.0
"215/10NW" --> Strike: 215.0, Dip: 10.0
"N30E/45NW" --> Strike: 210.0, Dip: 45.0
"E10N 20 N" --> Strike: 260.0, Dip: 20.0
"W30N/46.7 S" --> Strike: 120.0, Dip: 46.7

Similarly, you can parse rake measurements that don't follow the RHR.
"N30E/45NW 10NE" --> Strike: 210.0, Dip: 45.0, Rake: 170.0
"210 45 30N" --> Strike: 210.0, Dip: 45.0, Rake: 150.0
"N30E/45NW raking 10SW" --> Strike: 210.0, Dip: 45.0, Rake: 10.0

6.1. Examples 37

mplstereonet Documentation, Release 0.6-dev

6.1.16 plane_intersection.py

Find the intersection of two planes and plot it.

import matplotlib.pyplot as plt
import mplstereonet

strike1, dip1 = 315, 30
strike2, dip2 = 120, 40

fig, ax = mplstereonet.subplots()

Plot the two planes...
ax.plane(strike1, dip1)
ax.plane(strike2, dip2)

Find the intersection of the two as a plunge/bearing
plunge, bearing = mplstereonet.plane_intersection(strike1, dip1, strike2, dip2)

Plot the plunge/bearing
ax.line(plunge, bearing, marker='*', markersize=15)

plt.show()

38 Chapter 6. Examples

mplstereonet Documentation, Release 0.6-dev

Result

6.1.17 polar_overlay.py

Demonstrates adding both polar and arbitrary grid overlays on a stereonet. Changing the grid overlay does not change
the representation of the data. Notice that the plane, pole, and rake are all displayed identically in each case. Only the
grid lines change.

import matplotlib.pyplot as plt
import mplstereonet

def main():
Display the data with a polar grid
ax1 = basic()
ax1.grid(kind='polar')
ax1.set_title('Polar overlay on a Stereonet', y=1.1)

Display the data with a grid centered on the pole to the plotted plane.
ax2 = basic()
ax2.grid(center=mplstereonet.pole(315, 30))
ax2.set_title('Arbitrary overlay on a Stereonet', y=1.1)

plt.show()

(continues on next page)

6.1. Examples 39

mplstereonet Documentation, Release 0.6-dev

(continued from previous page)

def basic():
"""Set up a basic stereonet and plot the same data each time."""
fig, ax = mplstereonet.subplots()

strike, dip = 315, 30
ax.plane(strike, dip, color='lightblue')
ax.pole(strike, dip, color='green', markersize=15)
ax.rake(strike, dip, 40, marker='*', markersize=20, color='green')

Make a bit of room for the title...
fig.subplots_adjust(top=0.8)

return ax

if __name__ == '__main__':
main()

Result

40 Chapter 6. Examples

mplstereonet Documentation, Release 0.6-dev

6.1.18 rotation_example.py

As an exmaple of basic functionality, let’s plot a plane, the pole to the plane, and a rake along the plane.

import matplotlib.pyplot as plt
import mplstereonet

fig = plt.figure()

An un-rotated axes
ax1 = fig.add_subplot(121, projection='stereonet')

Rotated 30 degrees clockwise from North
ax2 = fig.add_subplot(122, projection='stereonet', rotation=30)

Measurements follow the right-hand-rule to indicate dip direction
strike, dip = 315, 30

Plot the same data on both axes
for ax in [ax1, ax2]:

ax.plane(strike, dip, 'g-', linewidth=2)
ax.pole(strike, dip, 'g^', markersize=18)
ax.rake(strike, dip, -25)

(continues on next page)

6.1. Examples 41

mplstereonet Documentation, Release 0.6-dev

(continued from previous page)

ax.grid()

plt.show()

Result

6.1.19 scatter.py

Example of how ax.scatter can be used to plot linear data on a stereonet varying color and/or size by other variables.

This also serves as a general example of how to convert orientation data into the coordinate system that the stereonet
plot uses so that generic matplotlib plotting methods may be used.

import numpy as np
import matplotlib.pyplot as plt
import mplstereonet
np.random.seed(1)

strikes = np.arange(0, 360, 15)
dips = 45 * np.ones(strikes.size)
magnitude = np.random.random(strikes.size)

(continues on next page)

42 Chapter 6. Examples

mplstereonet Documentation, Release 0.6-dev

(continued from previous page)

Convert our strikes and dips to stereonet coordinates
lons, lats = mplstereonet.pole(strikes, dips)

Now we'll plot our data and color by magnitude
fig, ax = mplstereonet.subplots()
sm = ax.scatter(lons, lats, c=magnitude, s=50, cmap='gist_earth')

ax.grid()
plt.show()

Result

6.1.20 stereonet_explanation.py

This figure illustrates the difference between the “internal” coordinate system of longitude and latitude that plotting
actually takes place in (e.g. if you were to use ax.plot or any other “raw” matplotlib command) and the conceptual
coordinate system that a lower-hemisphere stereonet represents.

import matplotlib.pyplot as plt
import numpy as np

(continues on next page)

6.1. Examples 43

mplstereonet Documentation, Release 0.6-dev

(continued from previous page)

import mplstereonet

def main():
fig, (ax1, ax2) = setup_figure()
stereonet_projection_explanation(ax1)
native_projection_explanation(ax2)
plt.show()

def setup_figure():
"""Setup the figure and axes"""
fig, axes = mplstereonet.subplots(ncols=2, figsize=(20,10))
for ax in axes:

Make the grid lines solid.
ax.grid(ls='-')
Make the longitude grids continue all the way to the poles
ax.set_longitude_grid_ends(90)

return fig, axes

def stereonet_projection_explanation(ax):
"""Example to explain azimuth and dip on a lower-hemisphere stereonet."""
ax.set_title('Dip and Azimuth', y=1.1, size=18)

Set the azimuth ticks to be just "N", "E", etc.
ax.set_azimuth_ticks(range(0, 360, 10))

Hackishly set some of the azimuth labels to North, East, etc...
fmt = ax.yaxis.get_major_formatter()
labels = [fmt(item) for item in ax.get_azimuth_ticks()]
labels[0] = 'North'
labels[9] = 'East'
labels[18] = 'South'
labels[27] = 'West'
ax.set_azimuth_ticklabels(labels)

Unhide the xticklabels and use them for dip labels
ax.xaxis.set_tick_params(label1On=True)
labels = list(range(10, 100, 10)) + list(range(80, 0, -10))
ax.set_xticks(np.radians(np.arange(-80, 90, 10)))
ax.set_xticklabels([fmt(np.radians(item)) for item in labels])

ax.set_xlabel('Dip or Plunge')

xlabel_halo(ax)
return ax

def native_projection_explanation(ax):
"""Example showing how the "native" longitude and latitude relate to the
stereonet projection."""
ax.set_title('Longitude and Latitude', size=18, y=1.1)

Hide the azimuth labels
ax.set_azimuth_ticklabels([])

Make the axis tick labels visible:
ax.set_xticks(np.radians(np.arange(-80, 90, 10)))
ax.tick_params(label1On=True)

(continues on next page)

44 Chapter 6. Examples

mplstereonet Documentation, Release 0.6-dev

(continued from previous page)

ax.set_xlabel('Longitude')

xlabel_halo(ax)
return ax

def xlabel_halo(ax):
"""Add a white "halo" around the xlabels."""
import matplotlib.patheffects as effects
for tick in ax.get_xticklabels() + [ax.xaxis.label]:

tick.set_path_effects([effects.withStroke(linewidth=4, foreground='w')])

if __name__ == '__main__':
main()

Result

6.1.21 two_point.py

Demonstrates plotting multiple linear features with a single ax.pole call.

The real purpose of this example is to serve as an implicit regression test for some oddities in the way axes grid lines
are handled in matplotlib and mplstereonet. A 2-vertex line can sometimes be confused for an axes grid line, and they
need different handling on a stereonet.

import matplotlib.pyplot as plt
import mplstereonet

fig, ax = mplstereonet.subplots(figsize=(7,7))
strike = [200, 250]
dip = [50, 60]
ax.pole(strike, dip, 'go', markersize=10)

(continues on next page)

6.1. Examples 45

mplstereonet Documentation, Release 0.6-dev

(continued from previous page)

ax.grid()
plt.show()

Result

46 Chapter 6. Examples

CHAPTER 7

Detailed Documentation

7.1 mplstereonet Package

7.1.1 mplstereonet Package

class mplstereonet.StereonetAxes(*args, **kwargs)
Bases: matplotlib.projections.geo.LambertAxes

An axes representing a lower-hemisphere “schmitt” (a.k.a. equal area) projection.

__init__(self, *args, **kwargs)
Initialization is identical to a normal Axes object except for the following kwarg:

Parameters

rotation [number] The rotation of the stereonet in degrees clockwise from North.

center_latitude [number] The center latitude of the stereonet in degrees.

center_longitude [number] The center longitude of the stereonet in degrees.

All additional args and kwargs are identical to Axes.__init__

cla(self)
Clear the current axes.

cone(self, plunge, bearing, angle, segments=100, bidirectional=True, **kwargs)
Plot a polygon of a small circle (a.k.a. a cone) with an angular radius of angle centered at a p/b of plunge,
bearing. Additional keyword arguments are passed on to the PathCollection. (e.g. to have an unfilled
small small circle, pass “facecolor=’none’”.)

Parameters

plunge [number or sequence of numbers] The plunge of the center of the cone in degrees.

bearing [number or sequence of numbers] The bearing of the center of the cone in degrees.

angle [number or sequence of numbers] The angular radius of the cone in degrees.

47

mplstereonet Documentation, Release 0.6-dev

segments [int, optional] The number of vertices to use for the cone. Defaults to 100.

bidirectional [boolean, optional] Whether or not to draw two patches (the one given and its
antipode) for each measurement. Defaults to True.

**kwargs Additional parameters are matplotlib.collections.
PatchCollection properties.

Returns

collection [matplotlib.collections.PathCollection]

Notes

If bidirectional is True, two circles will be plotted, even if only one of each pair is visible. This is the
default behavior.

density_contour(self, *args, **kwargs)
Estimates point density of the given linear orientation measurements (Interpreted as poles, lines, rakes, or
“raw” longitudes and latitudes based on the measurement keyword argument.) and plots contour lines of
the resulting density distribution.

Parameters

*args [A variable number of sequences of measurements.] By default, this will be expected
to be strike & dip, both array-like sequences representing poles to planes. (Rake
measurements require three parameters, thus the variable number of arguments.) The
measurement kwarg controls how these arguments are interpreted.

measurement [string, optional] Controls how the input arguments are interpreted. Defaults
to "poles". May be one of the following:

"poles" [strikes, dips] Arguments are assumed to be sequences of strikes and dips
of planes. Poles to these planes are used for contouring.

"lines" [plunges, bearings] Arguments are assumed to be sequences of plunges
and bearings of linear features.

"rakes" [strikes, dips, rakes] Arguments are assumed to be sequences of strikes,
dips, and rakes along the plane.

"radians" [lon, lat] Arguments are assumed to be “raw” longitudes and latitudes
in the stereonet’s underlying coordinate system.

method [string, optional] The method of density estimation to use. Defaults to
"exponential_kamb". May be one of the following:

"exponential_kamb" [Kamb with exponential smoothing] A modified Kamb
method using exponential smoothing [1]. Units are in numbers of standard deviations
by which the density estimate differs from uniform.

"linear_kamb" [Kamb with linear smoothing] A modified Kamb method using lin-
ear smoothing [1]. Units are in numbers of standard deviations by which the density
estimate differs from uniform.

"kamb" [Kamb with no smoothing] Kamb’s method [2] with no smoothing. Units are in
numbers of standard deviations by which the density estimate differs from uniform.

"schmidt" [1% counts] The traditional “Schmidt” (a.k.a. 1%) method. Counts points
within a counting circle comprising 1% of the total area of the hemisphere. Does not
take into account sample size. Units are in points per 1% area.

48 Chapter 7. Detailed Documentation

mplstereonet Documentation, Release 0.6-dev

sigma [int or float, optional] The number of standard deviations defining the expected num-
ber of standard deviations by which a random sample from a uniform distribution of points
would be expected to vary from being evenly distributed across the hemisphere. This con-
trols the size of the counting circle, and therefore the degree of smoothing. Higher sigmas
will lead to more smoothing of the resulting density distribution. This parameter only
applies to Kamb-based methods. Defaults to 3.

gridsize [int or 2-item tuple of ints, optional] The size of the grid that the density is estimated
on. If a single int is given, it is interpreted as an NxN grid. If a tuple of ints is given it is
interpreted as (nrows, ncols). Defaults to 100.

weights [array-like, optional] The relative weight to be applied to each input measurement.
The array will be normalized to sum to 1, so absolute value of the weights do not affect
the result. Defaults to None.

**kwargs Additional keyword arguments are passed on to matplotlib’s contour function.

Returns

A matplotlib ContourSet.

See also:

mplstereonet.density_grid

mplstereonet.StereonetAxes.density_contourf

matplotlib.pyplot.contour

matplotlib.pyplot.clabel

References

[1], [2]

Examples

Plot density contours of poles to the specified planes using a modified Kamb method with exponential
smoothing [1].

>>> strikes, dips = [120, 315, 86], [22, 85, 31]
>>> ax.density_contour(strikes, dips)

Plot density contours of a set of linear orientation measurements.

>>> plunges, bearings = [-10, 20, -30], [120, 315, 86]
>>> ax.density_contour(plunges, bearings, measurement='lines')

Plot density contours of a set of rake measurements.

>>> strikes, dips, rakes = [120, 315, 86], [22, 85, 31], [-5, 20, 9]
>>> ax.density_contour(strikes, dips, rakes, measurement='rakes')

Plot density contours of a set of “raw” longitudes and latitudes.

>>> lon, lat = np.radians([-40, 30, -85]), np.radians([21, -59, 45])
>>> ax.density_contour(lon, lat, measurement='radians')

7.1. mplstereonet Package 49

mplstereonet Documentation, Release 0.6-dev

Plot density contours of poles to planes using a Kamb method [2] with the density estimated on a 10x10
grid (in long-lat space)

>>> strikes, dips = [120, 315, 86], [22, 85, 31]
>>> ax.density_contour(strikes, dips, method='kamb', gridsize=10)

Plot density contours of poles to planes with contours at [1,2,3] standard deviations.

>>> strikes, dips = [120, 315, 86], [22, 85, 31]
>>> ax.density_contour(strikes, dips, levels=[1,2,3])

density_contourf(self, *args, **kwargs)
Estimates point density of the given linear orientation measurements (Interpreted as poles, lines, rakes, or
“raw” longitudes and latitudes based on the measurement keyword argument.) and plots filled contours
of the resulting density distribution.

Parameters

*args [A variable number of sequences of measurements.] By default, this will be ex-
pected to be strike & dip, both array-like sequences representing poles to planes.
(Rake measurements require three parameters, thus the variable number of argu-
ments.) The measurement kwarg controls how these arguments are interpreted.

measurement [string, optional] Controls how the input arguments are interpreted. De-
faults to "poles". May be one of the following:

"poles" [strikes, dips] Arguments are assumed to be sequences of strikes and
dips of planes. Poles to these planes are used for contouring.

"lines" [plunges, bearings] Arguments are assumed to be sequences of
plunges and bearings of linear features.

"rakes" [strikes, dips, rakes] Arguments are assumed to be sequences of
strikes, dips, and rakes along the plane.

"radians" [lon, lat] Arguments are assumed to be “raw” longitudes and lati-
tudes in the stereonet’s underlying coordinate system.

method [string, optional] The method of density estimation to use. Defaults to
"exponential_kamb". May be one of the following:

"exponential_kamb" [Kamb with exponential smoothing] A modified Kamb
method using exponential smoothing [1]. Units are in numbers of standard devia-
tions by which the density estimate differs from uniform.

"linear_kamb" [Kamb with linear smoothing] A modified Kamb method using
linear smoothing [1]. Units are in numbers of standard deviations by which the
density estimate differs from uniform.

"kamb" [Kamb with no smoothing] Kamb’s method [2] with no smoothing. Units
are in numbers of standard deviations by which the density estimate differs from
uniform.

"schmidt" [1% counts] The traditional “Schmidt” (a.k.a. 1%) method. Counts
points within a counting circle comprising 1% of the total area of the hemisphere.
Does not take into account sample size. Units are in points per 1% area.

sigma [int or float, optional] The number of standard deviations defining the expected
number of standard deviations by which a random sample from a uniform distribu-
tion of points would be expected to vary from being evenly distributed across the
hemisphere. This controls the size of the counting circle, and therefore the degree

50 Chapter 7. Detailed Documentation

mplstereonet Documentation, Release 0.6-dev

of smoothing. Higher sigmas will lead to more smoothing of the resulting density
distribution. This parameter only applies to Kamb-based methods. Defaults to 3.

gridsize [int or 2-item tuple of ints, optional] The size of the grid that the density is
estimated on. If a single int is given, it is interpreted as an NxN grid. If a tuple of ints
is given it is interpreted as (nrows, ncols). Defaults to 100.

weights [array-like, optional] The relative weight to be applied to each input measure-
ment. The array will be normalized to sum to 1, so absolute value of the weights do
not affect the result. Defaults to None.

**kwargs Additional keyword arguments are passed on to matplotlib’s contourf func-
tion.

Returns

A matplotlib QuadContourSet.

See also:

mplstereonet.density_grid

mplstereonet.StereonetAxes.density_contour

matplotlib.pyplot.contourf

matplotlib.pyplot.clabel

References

[1], [2]

Examples

Plot filled density contours of poles to the specified planes using a modified Kamb method with exponen-
tial smoothing [1].

>>> strikes, dips = [120, 315, 86], [22, 85, 31]
>>> ax.density_contourf(strikes, dips)

Plot filled density contours of a set of linear orientation measurements.

>>> plunges, bearings = [-10, 20, -30], [120, 315, 86]
>>> ax.density_contourf(plunges, bearings, measurement='lines')

Plot filled density contours of a set of rake measurements.

>>> strikes, dips, rakes = [120, 315, 86], [22, 85, 31], [-5, 20, 9]
>>> ax.density_contourf(strikes, dips, rakes, measurement='rakes')

Plot filled density contours of a set of “raw” longitudes and latitudes.

>>> lon, lat = np.radians([-40, 30, -85]), np.radians([21, -59, 45])
>>> ax.density_contourf(lon, lat, measurement='radians')

Plot filled density contours of poles to planes using a Kamb method [2] with the density estimated on a
10x10 grid (in long-lat space)

7.1. mplstereonet Package 51

mplstereonet Documentation, Release 0.6-dev

>>> strikes, dips = [120, 315, 86], [22, 85, 31]
>>> ax.density_contourf(strikes, dips, method='kamb', gridsize=10)

Plot filled density contours of poles to planes with contours at [1,2,3] standard deviations.

>>> strikes, dips = [120, 315, 86], [22, 85, 31]
>>> ax.density_contourf(strikes, dips, levels=[1,2,3])

format_coord(self, x, y)
Format displayed coordinates during mouseover of axes.

get_azimuth_ticklabels(self, minor=False)
Get the azimuth tick labels as a list of Text artists.

get_rotation(self)
The rotation of the stereonet in degrees clockwise from North.

grid(self, b=None, which=’major’, axis=’both’, kind=’arbitrary’, center=None, **kwargs)

Usage is identical to a normal axes grid except for the kind and center kwargs.
kind="polar" will add a polar overlay.

The center and kind arguments allow you to add a grid from a differently-centered stere-
onet. This is useful for making “polar stereonets” that still use the same coordinate system as
a standard stereonet. (i.e. a plane/line/whatever will have the same representation on both, but
the grid is displayed differently.)

To display a polar grid on a stereonet, use kind="polar".

It is also often useful to display a grid relative to an arbitrary measurement (e.g. a lineation
axis). In that case, use the lon_center and lat_center arguments. Note that these are
in radians in “stereonet coordinates”. Therefore, you’ll often want to use one of the functions
in stereonet_math to convert a line/plane/rake into the longitude and latitude you’d in-
put here. For example: add_overlay(center=stereonet_math.line(plunge,
bearing)).

If no parameters are specified, this is equivalent to turning on the standard grid. Configure the
grid lines.

Parameters

b [bool or None, optional] Whether to show the grid lines. If any kwargs are supplied, it
is assumed you want the grid on and b will be set to True.

If b is None and there are no kwargs, this toggles the visibility of the lines.

which [{‘major’, ‘minor’, ‘both’}, optional] The grid lines to apply the changes on.

axis [{‘both’, ‘x’, ‘y’}, optional] The axis to apply the changes on.

**kwargs [.Line2D properties] Define the line properties of the grid, e.g.:

grid(color='r', linestyle='-', linewidth=2)

Valid keyword arguments are:

Properties: agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi
value, and returns a (m, n, 3) array alpha: float or None animated: bool antialiased
or aa: bool clip_box: .Bbox clip_on: bool clip_path: Patch or (Path, Transform) or
None color or c: color contains: callable dash_capstyle: {‘butt’, ‘round’, ‘project-
ing’} dash_joinstyle: {‘miter’, ‘round’, ‘bevel’} dashes: sequence of floats (on/off

52 Chapter 7. Detailed Documentation

mplstereonet Documentation, Release 0.6-dev

ink in points) or (None, None) data: (2, N) array or two 1D arrays drawstyle or
ds: {‘default’, ‘steps’, ‘steps-pre’, ‘steps-mid’, ‘steps-post’}, default: ‘default’ figure:
.Figure fillstyle: {‘full’, ‘left’, ‘right’, ‘bottom’, ‘top’, ‘none’} gid: str in_layout: bool
label: object linestyle or ls: {‘-‘, ‘–’, ‘-.’, ‘:’, ‘’, (offset, on-off-seq), . . . } linewidth
or lw: float marker: marker style markeredgecolor or mec: color markeredgewidth or
mew: float markerfacecolor or mfc: color markerfacecoloralt or mfcalt: color mark-
ersize or ms: float markevery: None or int or (int, int) or slice or List[int] or float or
(float, float) path_effects: .AbstractPathEffect picker: float or callable[[Artist, Event],
Tuple[bool, dict]] pickradius: float rasterized: bool or None sketch_params: (scale:
float, length: float, randomness: float) snap: bool or None solid_capstyle: {‘butt’,
‘round’, ‘projecting’} solid_joinstyle: {‘miter’, ‘round’, ‘bevel’} transform: mat-
plotlib.transforms.Transform url: str visible: bool xdata: 1D array ydata: 1D array
zorder: float

Notes

The axis is drawn as a unit, so the effective zorder for drawing the grid is determined by the zorder of
each axis, not by the zorder of the .Line2D objects comprising the grid. Therefore, to set grid zorder, use
.set_axisbelow or, for more control, call the ~matplotlib.axis.Axis.set_zorder method of each axis.

line(self, plunge, bearing, *args, **kwargs)
Plot points representing linear features on the axes. Additional arguments and keyword arguments are
passed on to plot.

Parameters

plunge, bearing [number or sequence of numbers] The plunge and bearing of the line(s)
in degrees. The plunge is measured in degrees downward from the end of the feature
specified by the bearing.

**kwargs Additional parameters are passed on to plot.

Returns

A sequence of Line2D artists representing the point(s) specified by

strike and dip.

plane(self, strike, dip, *args, **kwargs)
Plot lines representing planes on the axes. Additional arguments and keyword arguments are passed on to
ax.plot.

Parameters

strike, dip [number or sequences of numbers] The strike and dip of the plane(s) in de-
grees. The dip direction is defined by the strike following the “right-hand rule”.

segments [int, optional] The number of vertices to use for the line. Defaults to 100.

**kwargs Additional parameters are passed on to plot.

Returns

A sequence of Line2D artists representing the lines specified by

strike and dip.

pole(self, strike, dip, *args, **kwargs)
Plot points representing poles to planes on the axes. Additional arguments and keyword arguments are
passed on to ax.plot.

Parameters

7.1. mplstereonet Package 53

mplstereonet Documentation, Release 0.6-dev

strike, dip [numbers or sequences of numbers] The strike and dip of the plane(s) in de-
grees. The dip direction is defined by the strike following the “right-hand rule”.

**kwargs Additional parameters are passed on to plot.

Returns

A sequence of Line2D artists representing the point(s) specified by

strike and dip.

rake(self, strike, dip, rake_angle, *args, **kwargs)
Plot points representing lineations along planes on the axes. Additional arguments and keyword arguments
are passed on to plot.

Parameters

strike, dip [number or sequences of numbers] The strike and dip of the plane(s) in de-
grees. The dip direction is defined by the strike following the “right-hand rule”.

rake_angle [number or sequences of numbers] The angle of the lineation(s) on the
plane(s) measured in degrees downward from horizontal. Zero degrees corresponds to
the “right hand” direction indicated by the strike, while negative angles are measured
downward from the opposite strike direction.

**kwargs Additional arguments are passed on to plot.

Returns

A sequence of Line2D artists representing the point(s) specified by

strike and dip.

rotation
The rotation of the stereonet in degrees clockwise from North.

set_azimuth_ticklabels(self, labels, fontdict=None, **kwargs)
Sets the labels for the azimuthal ticks.

Parameters

labels [A sequence of strings] Azimuth tick labels

**kwargs Additional parameters are text properties for the labels.

set_azimuth_ticks(self, angles, labels=None, frac=None, **kwargs)
Sets the azimuthal tick locations (Note: tick lines are not currently drawn or supported.).

Parameters

angles [sequence of numbers] The tick locations in degrees.

labels [sequence of strings] The tick label at each location. Defaults to a formatted ver-
sion of the specified angles.

frac [number] The radial location of the tick labels. 1.0 is the along the edge, 1.1 would
be outside, and 0.9 would be inside.

**kwargs Additional parameters are text properties for the labels.

set_longitude_grid(self, degrees)
Set the number of degrees between each longitude grid.

set_longitude_grid_ends(self, value)
Set the latitude(s) at which to stop drawing the longitude grids.

54 Chapter 7. Detailed Documentation

mplstereonet Documentation, Release 0.6-dev

set_position(self, pos, which=’both’)
Set the axes position.

Axes have two position attributes. The ‘original’ position is the position allocated for the Axes. The
‘active’ position is the position the Axes is actually drawn at. These positions are usually the same unless
a fixed aspect is set to the Axes. See .set_aspect for details.

Parameters

pos [[left, bottom, width, height] or ~matplotlib.transforms.Bbox] The new position of
the in .Figure coordinates.

which [{‘both’, ‘active’, ‘original’}, optional] Determines which position variables to
change.

set_rotation(self, rotation)
Set the rotation of the stereonet in degrees clockwise from North.

mplstereonet.pole(strike, dip)
Calculates the longitude and latitude of the pole(s) to the plane(s) specified by strike and dip, given in degrees.

Parameters

strike [number or sequence of numbers] The strike of the plane(s) in degrees, with dip di-
rection indicated by the azimuth (e.g. 315 vs. 135) specified following the “right hand
rule”.

dip [number or sequence of numbers] The dip of the plane(s) in degrees.

Returns

lon, lat [Arrays of longitude and latitude in radians.]

mplstereonet.plane(strike, dip, segments=100, center=(0, 0))
Calculates the longitude and latitude of segments points along the stereonet projection of each plane with a given
strike and dip in degrees. Returns points for one hemisphere only.

Parameters

strike [number or sequence of numbers] The strike of the plane(s) in degrees, with dip di-
rection indicated by the azimuth (e.g. 315 vs. 135) specified following the “right hand
rule”.

dip [number or sequence of numbers] The dip of the plane(s) in degrees.

segments [number or sequence of numbers] The number of points in the returned lon and lat
arrays. Defaults to 100 segments.

center [sequence of two numbers (lon, lat)] The longitude and latitude of the center of the
hemisphere that the returned points will be in. Defaults to 0,0 (approriate for a typical
stereonet).

Returns

lon, lat [arrays] num_segments x num_strikes arrays of longitude and latitude in radians.

mplstereonet.line(plunge, bearing)
Calculates the longitude and latitude of the linear feature(s) specified by plunge and bearing.

Parameters

plunge [number or sequence of numbers] The plunge of the line(s) in degrees. The plunge is
measured in degrees downward from the end of the feature specified by the bearing.

bearing [number or sequence of numbers] The bearing (azimuth) of the line(s) in degrees.

7.1. mplstereonet Package 55

mplstereonet Documentation, Release 0.6-dev

Returns

lon, lat [Arrays of longitude and latitude in radians.]

mplstereonet.rake(strike, dip, rake_angle)
Calculates the longitude and latitude of the linear feature(s) specified by strike, dip, and rake_angle.

Parameters

strike [number or sequence of numbers] The strike of the plane(s) in degrees, with dip di-
rection indicated by the azimuth (e.g. 315 vs. 135) specified following the “right hand
rule”.

dip [number or sequence of numbers] The dip of the plane(s) in degrees.

rake_angle [number or sequence of numbers] The angle of the lineation on the plane mea-
sured in degrees downward from horizontal. Zero degrees corresponds to the “right-
hand” direction indicated by the strike, while 180 degrees or a negative angle corresponds
to the opposite direction.

Returns

lon, lat [Arrays of longitude and latitude in radians.]

mplstereonet.plunge_bearing2pole(plunge, bearing)
Converts the given plunge and bearing in degrees to a strike and dip of the plane whose pole would be parallel
to the line specified. (i.e. The pole to the plane returned would plot at the same point as the specified plunge and
bearing.)

Parameters

plunge [number or sequence of numbers] The plunge of the line(s) in degrees. The plunge is
measured in degrees downward from the end of the feature specified by the bearing.

bearing [number or sequence of numbers] The bearing (azimuth) of the line(s) in degrees.

Returns

strike, dip [arrays] Arrays of strikes and dips in degrees following the right-hand-rule.

mplstereonet.geographic2pole(lon, lat)
Converts a longitude and latitude (from a stereonet) into the strike and dip of the plane whose pole lies at the
given longitude(s) and latitude(s).

Parameters

lon [array-like] A sequence of longitudes (or a single longitude) in radians

lat [array-like] A sequence of latitudes (or a single latitude) in radians

Returns

strike [array] A sequence of strikes in degrees

dip [array] A sequence of dips in degrees

mplstereonet.vector2plunge_bearing(x, y, z)
Converts a vector or series of vectors given as x, y, z in world coordinates into plunge/bearings.

Parameters

x [number or sequence of numbers] The x-component(s) of the normal vector

y [number or sequence of numbers] The y-component(s) of the normal vector

z [number or sequence of numbers] The z-component(s) of the normal vector

56 Chapter 7. Detailed Documentation

mplstereonet Documentation, Release 0.6-dev

Returns

plunge [array] The plunge of the vector in degrees downward from horizontal.

bearing [array] The bearing of the vector in degrees clockwise from north.

mplstereonet.geographic2plunge_bearing(lon, lat)
Converts longitude and latitude in stereonet coordinates into a plunge/bearing.

Parameters

lon, lat [numbers or sequences of numbers] Longitudes and latitudes in radians as measured
from a lower-hemisphere stereonet

Returns

plunge [array] The plunge of the vector in degrees downward from horizontal.

bearing [array] The bearing of the vector in degrees clockwise from north.

mplstereonet.density_grid(*args, **kwargs)
Estimates point density of the given linear orientation measurements (Interpreted as poles, lines, rakes, or “raw”
longitudes and latitudes based on the measurement keyword argument.). Returns a regular (in lat-long space)
grid of density estimates over a hemispherical surface.

Parameters

*args [2 or 3 sequences of measurements] By default, this will be expected to be strike
& dip, both array-like sequences representing poles to planes. (Rake measurements
require three parameters, thus the variable number of arguments.) The measurement
kwarg controls how these arguments are interpreted.

measurement [string, optional] Controls how the input arguments are interpreted. Defaults
to "poles". May be one of the following:

"poles" [strikes, dips] Arguments are assumed to be sequences of strikes and
dips of planes. Poles to these planes are used for contouring.

"lines" [plunges, bearings] Arguments are assumed to be sequences of
plunges and bearings of linear features.

"rakes" [strikes, dips, rakes] Arguments are assumed to be sequences of
strikes, dips, and rakes along the plane.

"radians" [lon, lat] Arguments are assumed to be “raw” longitudes and lati-
tudes in the stereonet’s underlying coordinate system.

method [string, optional] The method of density estimation to use. Defaults to
"exponential_kamb". May be one of the following:

"exponential_kamb" [Kamb with exponential smoothing] A modified Kamb
method using exponential smoothing [1]. Units are in numbers of standard devia-
tions by which the density estimate differs from uniform.

"linear_kamb" [Kamb with linear smoothing] A modified Kamb method using lin-
ear smoothing [1]. Units are in numbers of standard deviations by which the density
estimate differs from uniform.

"kamb" [Kamb with no smoothing] Kamb’s method [2] with no smoothing. Units are in
numbers of standard deviations by which the density estimate differs from uniform.

"schmidt" [1% counts] The traditional “Schmidt” (a.k.a. 1%) method. Counts points
within a counting circle comprising 1% of the total area of the hemisphere. Does not
take into account sample size. Units are in points per 1% area.

7.1. mplstereonet Package 57

mplstereonet Documentation, Release 0.6-dev

sigma [int or float, optional] The number of standard deviations defining the expected number
of standard deviations by which a random sample from a uniform distribution of points
would be expected to vary from being evenly distributed across the hemisphere. This
controls the size of the counting circle, and therefore the degree of smoothing. Higher
sigmas will lead to more smoothing of the resulting density distribution. This parameter
only applies to Kamb-based methods. Defaults to 3.

gridsize [int or 2-item tuple of ints, optional] The size of the grid that the density is estimated
on. If a single int is given, it is interpreted as an NxN grid. If a tuple of ints is given it is
interpreted as (nrows, ncols). Defaults to 100.

weights [array-like, optional] The relative weight to be applied to each input measurement.
The array will be normalized to sum to 1, so absolute value of the weights do not affect
the result. Defaults to None.

Returns

xi, yi, zi [2D arrays] The longitude, latitude and density values of the regularly gridded den-
sity estimates. Longitude and latitude are in radians.

See also:

mplstereonet.StereonetAxes.density_contourf

mplstereonet.StereonetAxes.density_contour

References

[1], [2]

mplstereonet.plane_intersection(strike1, dip1, strike2, dip2)
Finds the intersection of two planes. Returns a plunge/bearing of the linear intersection of the two planes.

Also accepts sequences of strike1s, dip1s, strike2s, dip2s.

Parameters

strike1, dip1 [numbers or sequences of numbers] The strike and dip (in degrees, following
the right-hand-rule) of the first plane(s).

strike2, dip2 [numbers or sequences of numbers] The strike and dip (in degrees, following
the right-hand-rule) of the second plane(s).

Returns

plunge, bearing [arrays] The plunge and bearing(s) (in degrees) of the line representing the
intersection of the two planes.

mplstereonet.xyz2stereonet(x, y, z)
Converts x, y, z in _world_ cartesian coordinates into lower-hemisphere stereonet coordinates.

Parameters

x, y, z [array-likes] Sequences of world coordinates

Returns

lon, lat [arrays] Sequences of longitudes and latitudes (in radians)

mplstereonet.stereonet2xyz(lon, lat)
Converts a sequence of longitudes and latitudes from a lower-hemisphere stereonet into _world_ x,y,z coordi-
nates.

58 Chapter 7. Detailed Documentation

mplstereonet Documentation, Release 0.6-dev

Parameters

lon, lat [array-likes] Sequences of longitudes and latitudes (in radians) from a lower-
hemisphere stereonet

Returns

x, y, z [arrays] The world x,y,z components of the vectors represented by the lon, lat coordi-
nates on the stereonet.

mplstereonet.vector2pole(x, y, z)
Converts a vector or series of vectors given as x, y, z in world coordinates into the strike/dip of the planes whose
normal vectors are parallel to the specified vectors. (In other words, each xi,yi,zi is treated as a normal vector
and this returns the strike/dip of the corresponding plane.)

Parameters

x [number or sequence of numbers] The x-component(s) of the normal vector

y [number or sequence of numbers] The y-component(s) of the normal vector

z [number or sequence of numbers] The z-component(s) of the normal vector

Returns

strike [array] The strike of the plane, in degrees clockwise from north. Dip direction is
indicated by the “right hand rule”.

dip [array] The dip of the plane, in degrees downward from horizontal.

mplstereonet.antipode(lon, lat)
Calculates the antipode (opposite point on the globe) of the given point or points. Input and output is expected
to be in radians.

Parameters

lon [number or sequence of numbers] Longitude in radians

lat [number or sequence of numbers] Latitude in radians

Returns

lon, lat [arrays] Sequences (regardless of whether or not the input was a single value or a
sequence) of longitude and latitude in radians.

mplstereonet.project_onto_plane(strike, dip, plunge, bearing)
Projects a linear feature(s) onto the surface of a plane. Returns a rake angle(s) along the plane.

This is also useful for finding the rake angle of a feature that already intersects the plane in question.

Parameters

strike, dip [numbers or sequences of numbers] The strike and dip (in degrees, following the
right-hand-rule) of the plane(s).

plunge, bearing [numbers or sequences of numbers] The plunge and bearing (in degrees) or
of the linear feature(s) to be projected onto the plane.

Returns

rake [array] A sequence of rake angles measured downwards from horizontal in degrees.
Zero degrees corresponds to the “right- hand” direction indicated by the strike, while a
negative angle corresponds to the opposite direction. Rakes returned by this function will
always be between -90 and 90 (inclusive).

7.1. mplstereonet Package 59

mplstereonet Documentation, Release 0.6-dev

mplstereonet.azimuth2rake(strike, dip, azimuth)
Projects an azimuth of a linear feature onto a plane as a rake angle.

Parameters

strike, dip [numbers] The strike and dip of the plane in degrees following the right-hand-rule.

azimuth [numbers] The azimuth of the linear feature in degrees clockwise from north (i.e. a
0-360 azimuth).

Returns

rake [number] A rake angle in degrees measured downwards from horizontal. Negative val-
ues correspond to the opposite end of the strike.

mplstereonet.parse_azimuth(azimuth)
Parses an azimuth measurement in azimuth or quadrant format.

Parameters

azimuth [string or number] An azimuth measurement in degrees or a quadrant measurement
of azimuth.

Returns

azi [float] The azimuth in degrees clockwise from north (range: 0-360)

See also:

parse_quadrant_measurement

parse_strike_dip

parse_plunge_bearing

mplstereonet.parse_quadrant_measurement(quad_azimuth)
Parses a quadrant measurement of the form “AxxB”, where A and B are cardinal directions and xx is an angle
measured relative to those directions.

In other words, it converts a measurement such as E30N into an azimuth of 60 degrees, or W10S into an azimuth
of 260 degrees.

For ambiguous quadrant measurements such as “N30S”, a ValueError is raised.

Parameters

quad_azimuth [string] An azimuth measurement in quadrant form.

Returns

azi [float] An azimuth in degrees clockwise from north.

See also:

parse_azimuth

mplstereonet.parse_strike_dip(strike, dip)
Parses strings of strike and dip and returns strike and dip measurements following the right-hand-rule.

Dip directions are parsed, and if the measurement does not follow the right-hand-rule, the opposite end of the
strike measurement is returned.

Accepts either quadrant-formatted or azimuth-formatted strikes.

For example, this would convert a strike of “N30E” and a dip of “45NW” to a strike of 210 and a dip of 45.

60 Chapter 7. Detailed Documentation

mplstereonet Documentation, Release 0.6-dev

Parameters

strike [string] A strike measurement. May be in azimuth or quadrant format.

dip [string] The dip angle and direction of a plane.

Returns

azi [float] Azimuth in degrees of the strike of the plane with dip direction indicated following
the right-hand-rule.

dip [float] Dip of the plane in degrees.

mplstereonet.parse_rake(strike, dip, rake)
Parses strings of strike, dip, and rake and returns a strike, dip, and rake measurement following the right-hand-
rule, with the “end” of the strike that the rake is measured from indicated by the sign of the rake (positive rakes
correspond to the strike direction, negative rakes correspond to the opposite end).

Accepts either quadrant-formatted or azimuth-formatted strikes.

For example, this would convert a strike of “N30E”, dip of “45NW”, with a rake of “10NE” to a strike of 210,
dip of 45, and rake of 170.

Rake angles returned by this function will always be between 0 and 180

If no directions are specified, the measuriement is assumed to follow the usual right-hand-rule convention.

Parameters

strike [string] A strike measurement. May be in azimuth or quadrant format.

dip [string] The dip angle and direction of a plane.

rake [string] The rake angle and direction that the rake is measured from.

Returns

strike, dip, rake [floats] Measurements of strike, dip, and rake following the conventions
outlined above.

mplstereonet.parse_plunge_bearing(plunge, bearing)
Parses strings of plunge and bearing and returns a consistent plunge and bearing measurement as floats. Plunge
angles returned by this function will always be between 0 and 90.

If no direction letter(s) is present, the plunge is assumed to be measured from the end specified by the bearing.
If a direction letter(s) is present, the bearing will be switched to the opposite (180 degrees) end if the specified
direction corresponds to the opposite end specified by the bearing.

Parameters

plunge [string] A plunge measurement.

bearing [string] A bearing measurement. May be in azimuth or quadrant format.

Returns

plunge, bearing: floats The plunge and bearing following the conventions outlined above.

Examples

>>> parse_plunge_bearing("30NW", 160)
... (30, 340)

7.1. mplstereonet Package 61

mplstereonet Documentation, Release 0.6-dev

mplstereonet.subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, sub-
plot_kw=None, hemisphere=’lower’, projection=’equal_area’, **fig_kw)

Identical to matplotlib.pyplot.subplots, except that this will default to producing equal-area stereonet axes.

This prevents constantly doing:

>>> fig, ax = plt.subplot(subplot_kw=dict(projection='stereonet'))

or

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111, projection='stereonet')

Using this function also avoids having mplstereonet continually appear to be an unused import when one
of the above methods are used.

Parameters

nrows [int] Number of rows of the subplot grid. Defaults to 1.

ncols [int] Number of columns of the subplot grid. Defaults to 1.

hemisphere [string] Currently this has no effect. When upper hemisphere and dual hemi-
sphere plots are implemented, this will control which hemisphere is displayed.

projection [string] The projection for the axes. Defaults to ‘equal_area’–an equal-area (a.k.a.
“Schmidtt”) stereonet. May also be ‘equal_angle’ for an equal-angle (a.k.a. “Wulff”)
stereonet or any other valid matplotlib projection (e.g. ‘polar’ or ‘rectilinear’ for a “nor-
mal” axes).

The following parameters are identical to matplotlib.pyplot.subplots:

sharex [string or bool] If True, the X axis will be shared amongst all subplots. If True and
you have multiple rows, the x tick labels on all but the last row of plots will have visible
set to False If a string must be one of “row”, “col”, “all”, or “none”. “all” has the same
effect as True, “none” has the same effect as False. If “row”, each subplot row will share
a X axis. If “col”, each subplot column will share a X axis and the x tick labels on all but
the last row will have visible set to False.

sharey [string or bool] If True, the Y axis will be shared amongst all subplots. If True and
you have multiple columns, the y tick labels on all but the first column of plots will have
visible set to False If a string must be one of “row”, “col”, “all”, or “none”. “all” has the
same effect as True, “none” has the same effect as False. If “row”, each subplot row will
share a Y axis. If “col”, each subplot column will share a Y axis and the y tick labels on
all but the last row will have visible set to False.

squeeze [bool]

If True, extra dimensions are squeezed out from the returned axis object:

• if only one subplot is constructed (nrows=ncols=1), the resulting single Axis
object is returned as a scalar.

• for Nx1 or 1xN subplots, the returned object is a 1-d numpy object array of
Axis objects are returned as numpy 1-d arrays.

• for NxM subplots with N>1 and M>1 are returned as a 2d array.

If False, no squeezing at all is done: the returned axis object is always a 2-d array
contaning Axis instances, even if it ends up being 1x1.

62 Chapter 7. Detailed Documentation

mplstereonet Documentation, Release 0.6-dev

subplot_kw [dict] Dict with keywords passed to the add_subplot() call used to create
each subplots.

fig_kw [dict] Dict with keywords passed to the figure() call. Note that all keywords
not recognized above will be automatically included here.

Returns

fig, ax [tuple]

• fig is the matplotlib.figure.Figure object

• ax can be either a single axis object or an array of axis objects if more than one
supblot was created. The dimensions of the resulting array can be controlled with
the squeeze keyword, see above.

mplstereonet.pole2plunge_bearing(strike, dip)
Converts the given strike and dip in dgrees of a plane(s) to a plunge and bearing of its pole.

Parameters

strike [number or sequence of numbers] The strike of the plane(s) in degrees, with dip di-
rection indicated by the azimuth (e.g. 315 vs. 135) specified following the “right hand
rule”.

dip [number or sequence of numbers] The dip of the plane(s) in degrees.

Returns

plunge, bearing [arrays] Arrays of plunges and bearings of the pole to the plane(s) in de-
grees.

mplstereonet.fit_girdle(*args, **kwargs)
Fits a plane to a scatter of points on a stereonet (a.k.a. a “girdle”).

Input arguments will be interpreted as poles, lines, rakes, or “raw” longitudes and latitudes based on the
measurement keyword argument. (Defaults to "poles".)

Parameters

*args [2 or 3 sequences of measurements] By default, this will be expected to be strikes
& dips, both array-like sequences representing poles to planes. (Rake measurements
require three parameters, thus the variable number of arguments.) The measurement
kwarg controls how these arguments are interpreted.

measurement [{‘poles’, ‘lines’, ‘rakes’, ‘radians’}, optional] Controls how the input argu-
ments are interpreted. Defaults to "poles". May be one of the following:

"poles" [Arguments are assumed to be sequences of strikes and] dips of
planes. Poles to these planes are used for density contouring.

"lines" [Arguments are assumed to be sequences of plunges and] bearings of
linear features.

"rakes" [Arguments are assumed to be sequences of strikes,] dips, and rakes
along the plane.

"radians" [Arguments are assumed to be “raw” longitudes and] latitudes in
the underlying projection’s coordinate system.

bidirectional [boolean, optional] Whether or not the antipode of each measurement will be
used in the calculation. For almost all use cases, it should. Defaults to True.

Returns

7.1. mplstereonet Package 63

mplstereonet Documentation, Release 0.6-dev

strike, dip: floats The strike and dip of the plane.

Notes

The pole to the best-fit plane is extracted by calculating the smallest eigenvector of the covariance matrix of the
input measurements in cartesian 3D space.

Examples

Calculate the plunge of a cylindrical fold axis from a series of strike/dip measurements of bedding from the
limbs:

>>> strike = [270, 334, 270, 270]
>>> dip = [20, 15, 80, 78]
>>> s, d = mplstereonet.fit_girdle(strike, dip)
>>> plunge, bearing = mplstereonet.pole2plunge_bearing(s, d)

mplstereonet.fit_pole(*args, **kwargs)
Fits the pole to a plane to a “bullseye” of points on a stereonet.

Input arguments will be interpreted as poles, lines, rakes, or “raw” longitudes and latitudes based on the
measurement keyword argument. (Defaults to "poles".)

Parameters

*args [2 or 3 sequences of measurements] By default, this will be expected to be strike
& dip, both array-like sequences representing poles to planes. (Rake measurements
require three parameters, thus the variable number of arguments.) The measurement
kwarg controls how these arguments are interpreted.

measurement [{‘poles’, ‘lines’, ‘rakes’, ‘radians’}, optional] Controls how the input argu-
ments are interpreted. Defaults to "poles". May be one of the following:

"poles" [Arguments are assumed to be sequences of strikes and] dips of
planes. Poles to these planes are used for density contouring.

"lines" [Arguments are assumed to be sequences of plunges and] bearings of
linear features.

"rakes" [Arguments are assumed to be sequences of strikes,] dips, and rakes
along the plane.

"radians" [Arguments are assumed to be “raw” longitudes and] latitudes in
the underlying projection’s coordinate system.

bidirectional [boolean, optional] Whether or not the antipode of each measurement will be
used in the calculation. For almost all use cases, it should. Defaults to True.

Returns

strike, dip: floats The strike and dip of the plane.

Notes

The pole to the best-fit plane is extracted by calculating the largest eigenvector of the covariance matrix of the
input measurements in cartesian 3D space.

64 Chapter 7. Detailed Documentation

mplstereonet Documentation, Release 0.6-dev

Examples

Find the average strike/dip of a series of bedding measurements

>>> strike = [270, 65, 280, 300]
>>> dip = [20, 15, 10, 5]
>>> strike0, dip0 = mplstereonet.fit_pole(strike, dip)

mplstereonet.eigenvectors(*args, **kwargs)
Finds the 3 eigenvectors and eigenvalues of the 3D covariance matrix of a series of geometries. This can be used
to fit a plane/pole to a dataset or for shape fabric analysis (e.g. Flinn/Hsu plots).

Input arguments will be interpreted as poles, lines, rakes, or “raw” longitudes and latitudes based on the mea-
surement keyword argument. (Defaults to "poles".)

Parameters

*args [2 or 3 sequences of measurements] By default, this will be expected to be strike
& dip, both array-like sequences representing poles to planes. (Rake measurements
require three parameters, thus the variable number of arguments.) The measurement
kwarg controls how these arguments are interpreted.

measurement [{‘poles’, ‘lines’, ‘rakes’, ‘radians’}, optional] Controls how the input argu-
ments are interpreted. Defaults to "poles". May be one of the following:

"poles" [Arguments are assumed to be sequences of strikes and] dips of
planes. Poles to these planes are used for density contouring.

"lines" [Arguments are assumed to be sequences of plunges and] bearings of
linear features.

"rakes" [Arguments are assumed to be sequences of strikes,] dips, and rakes
along the plane.

"radians" [Arguments are assumed to be “raw” longitudes and] latitudes in
the underlying projection’s coordinate system.

bidirectional [boolean, optional] Whether or not the antipode of each measurement will be
used in the calculation. For almost all use cases, it should. Defaults to True.

Returns

plunges, bearings, values [sequences of 3 floats each] The plunges, bearings, and eigen-
values of the three eigenvectors of the covariance matrix of the input data. The measure-
ments are returned sorted in descending order relative to the eigenvalues. (i.e. The largest
eigenvector/eigenvalue is first.)

Examples

Find the eigenvectors as plunge/bearing and eigenvalues of the 3D covariance matrix of a series of planar mea-
surements:

>>> strikes = [270, 65, 280, 300]
>>> dips = [20, 15, 10, 5]
>>> plu, azi, vals = mplstereonet.eigenvectors(strikes, dips)

mplstereonet.kmeans(*args, **kwargs)
Find centers of multi-modal clusters of data using a kmeans approach modified for spherical measurements.

Parameters

7.1. mplstereonet Package 65

mplstereonet Documentation, Release 0.6-dev

*args [2 or 3 sequences of measurements] By default, this will be expected to be strike
& dip, both array-like sequences representing poles to planes. (Rake measurements
require three parameters, thus the variable number of arguments.) The measurement
kwarg controls how these arguments are interpreted.

num [int] The number of clusters to find. Defaults to 2.

bidirectional [bool] Whether or not the measurements are bi-directional linear/planar fea-
tures or directed vectors. Defaults to True.

tolerance [float] Iteration will continue until the centers have not changed by more than this
amount. Defaults to 1e-5.

measurement [string, optional] Controls how the input arguments are interpreted. Defaults
to "poles". May be one of the following:

"poles" [strikes, dips] Arguments are assumed to be sequences of strikes and
dips of planes. Poles to these planes are used for analysis.

"lines" [plunges, bearings] Arguments are assumed to be sequences of
plunges and bearings of linear features.

"rakes" [strikes, dips, rakes] Arguments are assumed to be sequences of
strikes, dips, and rakes along the plane.

"radians" [lon, lat] Arguments are assumed to be “raw” longitudes and lati-
tudes in the stereonet’s underlying coordinate system.

Returns

centers [An Nx2 array-like] Longitude and latitude in radians of the centers of each cluster.

mplstereonet.find_mean_vector(*args, **kwargs)
Returns the mean vector for a set of measurments. By default, this expects the input to be plunges and bearings,
but the type of input can be controlled through the measurement kwarg.

Parameters

*args [2 or 3 sequences of measurements] By default, this will be expected to be plunge &
bearing, both array-like sequences representing linear features. (Rake measurements
require three parameters, thus the variable number of arguments.) The measurement
kwarg controls how these arguments are interpreted.

measurement [string, optional] Controls how the input arguments are interpreted. Defaults
to "lines". May be one of the following:

"poles" [strikes, dips] Arguments are assumed to be sequences of strikes and
dips of planes. Poles to these planes are used for analysis.

"lines" [plunges, bearings] Arguments are assumed to be sequences of
plunges and bearings of linear features.

"rakes" [strikes, dips, rakes] Arguments are assumed to be sequences of
strikes, dips, and rakes along the plane.

"radians" [lon, lat] Arguments are assumed to be “raw” longitudes and lati-
tudes in the stereonet’s underlying coordinate system.

Returns

mean_vector [tuple of two floats] The plunge and bearing of the mean vector (in degrees).

r_value [float] The length of the mean vector (a value between 0 and 1).

66 Chapter 7. Detailed Documentation

mplstereonet Documentation, Release 0.6-dev

mplstereonet.find_fisher_stats(*args, **kwargs)
Returns the mean vector and summary statistics for a set of measurements. By default, this expects the input to
be plunges and bearings, but the type of input can be controlled through the measurement kwarg.

Parameters

*args [2 or 3 sequences of measurements] By default, this will be expected to be plunge &
bearing, both array-like sequences representing linear features. (Rake measurements
require three parameters, thus the variable number of arguments.) The measurement
kwarg controls how these arguments are interpreted.

conf [number] The confidence level (0-100). Defaults to 95%, similar to 2 sigma.

measurement [string, optional] Controls how the input arguments are interpreted. Defaults
to "lines". May be one of the following:

"poles" [strikes, dips] Arguments are assumed to be sequences of strikes and
dips of planes. Poles to these planes are used for analysis.

"lines" [plunges, bearings] Arguments are assumed to be sequences of
plunges and bearings of linear features.

"rakes" [strikes, dips, rakes] Arguments are assumed to be sequences of
strikes, dips, and rakes along the plane.

"radians" [lon, lat] Arguments are assumed to be “raw” longitudes and lati-
tudes in the stereonet’s underlying coordinate system.

Returns

mean_vector: tuple of two floats A set consisting of the plunge and bearing of the mean
vector (in degrees).

stats [tuple of three floats] (r_value, confidence, kappa) The r_value is the
magnitude of the mean vector as a number between 0 and 1. The confidence radius
is the opening angle of a small circle that corresponds to the confidence in the calcu-
lated direction, and is dependent on the input conf. The kappa value is the dispersion
factor that quantifies the amount of dispersion of the given vectors, analgous to a vari-
ance/stddev.

mplstereonet.angular_distance(first, second, bidirectional=True)
Calculate the angular distance between two linear features or elementwise angular distance between two sets of
linear features. (Note: a linear feature in this context is a point on a stereonet represented by a single latitude
and longitude.)

Parameters

first [(lon, lat) 2xN array-like or sequence of two numbers] The longitudes and latitudes of
the first measurements in radians.

second [(lon, lat) 2xN array-like or sequence of two numbers] The longitudes and latitudes
of the second measurements in radians.

bidirectional [boolean] If True, only “inner” angles will be returned. In other words, all an-
gles returned by this function will be in the range [0, pi/2] (0 to 90 in degrees). Otherwise,
first and second will be treated as vectors going from the origin outwards instead of
bidirectional infinite lines. Therefore, with bidirectional=False, angles returned
by this function will be in the range [0, pi] (zero to 180 degrees).

Returns

dist [array] The elementwise angular distance between each pair of measurements in (lon1,
lat1) and (lon2, lat2).

7.1. mplstereonet Package 67

mplstereonet Documentation, Release 0.6-dev

Examples

Calculate the angle between two lines specified as a plunge/bearing

>>> angle = angular_distance(line(30, 270), line(40, 90))
>>> np.degrees(angle)
array([70.])

Let’s do the same, but change the “bidirectional” argument:

>>> first, second = line(30, 270), line(40, 90)
>>> angle = angular_distance(first, second, bidirectional=False)
>>> np.degrees(angle)
array([110.])

Calculate the angle between two planes.

>>> angle = angular_distance(pole(0, 10), pole(180, 10))
>>> np.degrees(angle)
array([20.])

:undoc-members:

68 Chapter 7. Detailed Documentation

Bibliography

[Kamb1956] Kamb, 1959. Ice Petrofabric Observations from Blue Glacier, Washington, in Relation to Theory and
Experiment. Journal of Geophysical Research, Vol. 64, No. 11, pp. 1891–1909.

[Vollmer1995] Vollmer, 1995. C Program for Automatic Contouring of Spherical Orientation Data Using a Modified
Kamb Method. Computers & Geosciences, Vol. 21, No. 1, pp. 31–49.

[Fisher1993] Fisher, N.I., Lewis, T., Embleton, B.J.J. (1993) “Statistical Analysis of Spherical Data”

[1] Vollmer, 1995. C Program for Automatic Contouring of Spherical Orientation Data Using a Modified
Kamb Method. Computers & Geosciences, Vol. 21, No. 1, pp. 31–49.

[2] Kamb, 1959. Ice Petrofabric Observations from Blue Glacier, Washington, in Relation to Theory and
Experiment. Journal of Geophysical Research, Vol. 64, No. 11, pp. 1891–1909.

[1] Vollmer, 1995. C Program for Automatic Contouring of Spherical Orientation Data Using a Modified
Kamb Method. Computers & Geosciences, Vol. 21, No. 1, pp. 31–49.

[2] Kamb, 1959. Ice Petrofabric Observations from Blue Glacier, Washington, in Relation to Theory and
Experiment. Journal of Geophysical Research, Vol. 64, No. 11, pp. 1891–1909.

[1] Vollmer, 1995. C Program for Automatic Contouring of Spherical Orientation Data Using a Modified
Kamb Method. Computers & Geosciences, Vol. 21, No. 1, pp. 31–49.

[2] Kamb, 1959. Ice Petrofabric Observations from Blue Glacier, Washington, in Relation to Theory and
Experiment. Journal of Geophysical Research, Vol. 64, No. 11, pp. 1891–1909.

69

mplstereonet Documentation, Release 0.6-dev

70 Bibliography

Python Module Index

m
mplstereonet, 47

71

mplstereonet Documentation, Release 0.6-dev

72 Python Module Index

Index

Symbols
__init__() (mplstereonet.StereonetAxes method), 47

A
angular_distance() (in module mplstereonet), 67
antipode() (in module mplstereonet), 59
azimuth2rake() (in module mplstereonet), 59

C
cla() (mplstereonet.StereonetAxes method), 47
cone() (mplstereonet.StereonetAxes method), 47

D
density_contour() (mplstereonet.StereonetAxes

method), 48
density_contourf() (mplstereonet.StereonetAxes

method), 50
density_grid() (in module mplstereonet), 57

E
eigenvectors() (in module mplstereonet), 65

F
find_fisher_stats() (in module mplstereonet), 66
find_mean_vector() (in module mplstereonet), 66
fit_girdle() (in module mplstereonet), 63
fit_pole() (in module mplstereonet), 64
format_coord() (mplstereonet.StereonetAxes

method), 52

G
geographic2plunge_bearing() (in module

mplstereonet), 57
geographic2pole() (in module mplstereonet), 56
get_azimuth_ticklabels() (mplstere-

onet.StereonetAxes method), 52
get_rotation() (mplstereonet.StereonetAxes

method), 52
grid() (mplstereonet.StereonetAxes method), 52

K
kmeans() (in module mplstereonet), 65

L
line() (in module mplstereonet), 55
line() (mplstereonet.StereonetAxes method), 53

M
mplstereonet (module), 47

P
parse_azimuth() (in module mplstereonet), 60
parse_plunge_bearing() (in module mplstere-

onet), 61
parse_quadrant_measurement() (in module

mplstereonet), 60
parse_rake() (in module mplstereonet), 61
parse_strike_dip() (in module mplstereonet), 60
plane() (in module mplstereonet), 55
plane() (mplstereonet.StereonetAxes method), 53
plane_intersection() (in module mplstereonet),

58
plunge_bearing2pole() (in module mplstereonet),

56
pole() (in module mplstereonet), 55
pole() (mplstereonet.StereonetAxes method), 53
pole2plunge_bearing() (in module mplstereonet),

63
project_onto_plane() (in module mplstereonet),

59

R
rake() (in module mplstereonet), 56
rake() (mplstereonet.StereonetAxes method), 54
rotation (mplstereonet.StereonetAxes attribute), 54

S
set_azimuth_ticklabels() (mplstere-

onet.StereonetAxes method), 54

73

mplstereonet Documentation, Release 0.6-dev

set_azimuth_ticks() (mplstereonet.StereonetAxes
method), 54

set_longitude_grid() (mplstere-
onet.StereonetAxes method), 54

set_longitude_grid_ends() (mplstere-
onet.StereonetAxes method), 54

set_position() (mplstereonet.StereonetAxes
method), 54

set_rotation() (mplstereonet.StereonetAxes
method), 55

stereonet2xyz() (in module mplstereonet), 58
StereonetAxes (class in mplstereonet), 47
subplots() (in module mplstereonet), 61

V
vector2plunge_bearing() (in module mplstere-

onet), 56
vector2pole() (in module mplstereonet), 59

X
xyz2stereonet() (in module mplstereonet), 58

74 Index

	Install
	Basic Usage
	Density Contouring
	Utilities
	References
	Examples
	Examples

	Detailed Documentation
	mplstereonet Package

	Bibliography
	Python Module Index
	Index

