

    
      
          
            
  
mplstereonet

mplstereonet provides lower-hemisphere equal-area and equal-angle stereonets
for matplotlib.

[image: Comparison of equal angle and equal area stereonets.]
 [https://github.com/joferkington/mplstereonet/blob/master/examples/equal_area_equal_angle_comparison.py]
Install

mplstereonet can be installed from PyPi using pip by:

pip install mplstereonet





Alternatively, you can download the source and install locally using (from the
main directory of the repository):

python setup.py install





If you’re planning on developing mplstereonet or would like to experiment
with making local changes, consider setting up a development installation so
that your changes are reflected when you import the package:

python setup.py develop








Basic Usage

In most cases, you’ll want to import mplstereonet and then make an axes
with projection="stereonet" (By default, this is an equal-area stereonet).
Alternately, you can use mplstereonet.subplots, which functions identically
to matplotlib.pyplot.subplots, but creates stereonet axes.

As an example:

import matplotlib.pyplot as plt
import mplstereonet

fig = plt.figure()
ax = fig.add_subplot(111, projection='stereonet')

strike, dip = 315, 30
ax.plane(strike, dip, 'g-', linewidth=2)
ax.pole(strike, dip, 'g^', markersize=18)
ax.rake(strike, dip, -25)
ax.grid()

plt.show()





[image: A basic stereonet with a plane, pole to the plane, and rake along the plane]
 [https://github.com/joferkington/mplstereonet/blob/master/examples/basic.py]Planes, lines, poles, and rakes can be plotted using axes methods (e.g.
ax.line(plunge, bearing) or ax.rake(strike, dip, rake_angle)).

All planar measurements are expected to follow the right-hand-rule to indicate
dip direction. As an example, 315/30S would be 135/30 following the right-hand
rule.




Density Contouring

mplstereonet also provides a few different methods of producing contoured
orientation density diagrams.

The ax.density_contour and ax.density_contourf axes methods provide density
contour lines and filled density contours, respectively.  “Raw” density grids
can be produced with the mplstereonet.density_grid function.

As a basic example:

import matplotlib.pyplot as plt
import numpy as np
import mplstereonet

fig, ax = mplstereonet.subplots()

strike, dip = 90, 80
num = 10
strikes = strike + 10 * np.random.randn(num)
dips = dip + 10 * np.random.randn(num)

cax = ax.density_contourf(strikes, dips, measurement='poles')

ax.pole(strikes, dips)
ax.grid(True)
fig.colorbar(cax)

plt.show()





[image: Orientation density contours.]
 [https://github.com/joferkington/mplstereonet/blob/master/examples/contouring.py]By default, a modified Kamb method with exponential smoothing [Vollmer1995] is
used to estimate the orientation density distribution. Other methods (such as
the “traditional” Kamb [Kamb1956] and “Schmidt” (a.k.a. 1%) methods) are
available as well. The method and expected count (in standard deviations) can
be controlled by the method and sigma keyword arguments, respectively.

[image: Orientation density contours.]
 [https://github.com/joferkington/mplstereonet/blob/master/examples/contour_angelier_data.py]


Utilities

mplstereonet also includes a number of utilities to parse structural
measurements in either quadrant or azimuth form such that they follow the
right-hand-rule.

For an example, see parsing_example.py [https://github.com/joferkington/mplstereonet/blob/master/examples/parsing_example.py]:

Parse quadrant azimuth measurements
"N30E" --> 30.0
"E30N" --> 60.0
"W10S" --> 260.0
"N 10 W" --> 350.0

Parse quadrant strike/dip measurements.
Note that the output follows the right-hand-rule.
"215/10" --> Strike: 215.0, Dip: 10.0
"215/10E" --> Strike: 35.0, Dip: 10.0
"215/10NW" --> Strike: 215.0, Dip: 10.0
"N30E/45NW" --> Strike: 210.0, Dip: 45.0
"E10N   20 N" --> Strike: 260.0, Dip: 20.0
"W30N/46.7 S" --> Strike: 120.0, Dip: 46.7

Similarly, you can parse rake measurements that don't follow the RHR.
"N30E/45NW 10NE" --> Strike: 210.0, Dip: 45.0, Rake: 170.0
"210 45 30N" --> Strike: 210.0, Dip: 45.0, Rake: 150.0
"N30E/45NW raking 10SW" --> Strike: 210.0, Dip: 45.0, Rake: 10.0





Additionally, you can find plane intersections and make other calculations by
combining utility functions.  See plane_intersection.py [https://github.com/joferkington/mplstereonet/blob/master/examples/plane_intersection.py] and
parse_anglier_data.py [https://github.com/joferkington/mplstereonet/blob/master/examples/parse_angelier_data.py] for examples.




References


	Kamb1956

	Kamb, 1959. Ice Petrofabric Observations from Blue Glacier,
Washington, in Relation to Theory and Experiment. Journal of
Geophysical Research, Vol. 64, No. 11, pp. 1891–1909.



	Vollmer1995

	Vollmer, 1995. C Program for Automatic Contouring of Spherical
Orientation Data Using a Modified Kamb Method. Computers &
Geosciences, Vol. 21, No. 1, pp. 31–49.










Examples



	Examples
	axial_plane.py

	basic.py

	cone_aka_small_circle.py

	contour_angelier_data.py

	contour_normal_vectors.py

	contouring.py

	cross_section_plane.py

	equal_area_equal_angle_comparison.py

	fault_slip_plot.py

	fisher_stats.py

	fit_girdle_example.py

	kmeans_example.py

	multiple_planes.py

	parse_angelier_data.py

	parsing_example.py

	plane_intersection.py

	polar_overlay.py

	rotation_example.py

	scatter.py

	stereonet_explanation.py

	two_point.py












Detailed Documentation



	mplstereonet Package
	mplstereonet Package













          

      

      

    

  

    
      
          
            
  
Examples



	axial_plane.py

	basic.py

	cone_aka_small_circle.py

	contour_angelier_data.py

	contour_normal_vectors.py

	contouring.py

	cross_section_plane.py

	equal_area_equal_angle_comparison.py

	fault_slip_plot.py

	fisher_stats.py

	fit_girdle_example.py

	kmeans_example.py

	multiple_planes.py

	parse_angelier_data.py

	parsing_example.py

	plane_intersection.py

	polar_overlay.py

	rotation_example.py

	scatter.py

	stereonet_explanation.py

	two_point.py









          

      

      

    

  

    
      
          
            
  
axial_plane.py

Illustrates fitting an axial plane to two clusters of dip measurements.

In this case, we’re faking it by using Anglier’s fault orientation data,
but pretend these were bedding dips in two limbs of a fold instead of fault
orientations.

The steps mimic what you’d do graphically:



	Find the centers of the two modes of the bedding measurements


	Fit a girdle to them to find the plunge axis of the fold


	Find the midpoint along that girdle between the two centers


	The axial plane will be the girdle that fits the midpoint and plunge
axis of the fold.







import matplotlib.pyplot as plt
import mplstereonet

import parse_angelier_data

# Load data from Angelier, 1979
strike, dip, rake = parse_angelier_data.load()

# Plot the raw data and contour it:
fig, ax = mplstereonet.subplots()
ax.density_contour(strike, dip, rake, measurement='rakes', cmap='gist_earth',
                    sigma=1.5)
ax.rake(strike, dip, rake, marker='.', color='black')

# Find the two modes
centers = mplstereonet.kmeans(strike, dip, rake, num=2, measurement='rakes')
strike_cent, dip_cent = mplstereonet.geographic2pole(*zip(*centers))
ax.pole(strike_cent, dip_cent, 'ro', ms=12)

# Fit a girdle to the two modes
# The pole of this plane will be the plunge of the fold axis
axis_s, axis_d = mplstereonet.fit_girdle(*zip(*centers), measurement='radians')
ax.plane(axis_s, axis_d, color='green')
ax.pole(axis_s, axis_d, color='green', marker='o', ms=15)

# Now we'll find the midpoint. We could project the centers as rakes on the
# plane we just fit, but it's easier to get their mean vector instead.
mid, _ = mplstereonet.find_mean_vector(*zip(*centers), measurement='radians')
midx, midy = mplstereonet.line(*mid)

# Now let's find the axial plane by fitting another girdle to the midpoint
# and the pole of the plunge axis.
xp, yp = mplstereonet.pole(axis_s, axis_d)

x, y = [xp, midx], [yp, midy]
axial_s, axial_dip = mplstereonet.fit_girdle(x, y, measurement='radians')

ax.plane(axial_s, axial_dip, color='lightblue', lw=3)

plt.show()






Result

[image: ../_images/axial_plane_0.png]






          

      

      

    

  

    
      
          
            
  
basic.py

As an example of basic functionality, let’s plot a plane, the pole to the
plane, and a rake along the plane.

import matplotlib.pyplot as plt
import mplstereonet

fig = plt.figure()
ax = fig.add_subplot(111, projection='stereonet')

# Measurements follow the right-hand-rule to indicate dip direction
strike, dip = 315, 30

ax.plane(strike, dip, 'g-', linewidth=2)
ax.pole(strike, dip, 'g^', markersize=18)
ax.rake(strike, dip, -25)

ax.grid()

plt.show()






Result

[image: ../_images/basic_0.png]






          

      

      

    

  

    
      
          
            
  
cone_aka_small_circle.py

Demonstrates plotting small circles (cones) on a stereonet.

import matplotlib.pyplot as plt
import numpy as np
import mplstereonet

# Generate some scattered strikes and dips
num = 100
strike0, dip0 = 315, 85
strike = np.random.normal(strike0, 5, num)
dip = np.random.normal(dip0, 5, num)

# Convert the strike/dip of the pole to plane to a plunge/bearing
plunge, bearing = mplstereonet.stereonet_math.pole2plunge_bearing(strike0, dip0)

fig, ax = mplstereonet.subplots()
ax.pole(strike, dip, color='k')

# We want the plunge and bearing repeated 3 times for three circles...
plunge, bearing = 3 * list(plunge), 3 * list(bearing)
ax.cone(plunge, bearing, [5, 10, 15], facecolor='', zorder=4, linewidth=2,
        edgecolors=['red', 'green', 'blue'])

plt.show()






Result

[image: ../_images/cone_aka_small_circle_0.png]






          

      

      

    

  

    
      
          
            
  
contour_angelier_data.py

Reproduce Figure 5 from Vollmer, 1995 to illustrate different density contouring
methods.

import matplotlib.pyplot as plt
import mplstereonet

import parse_angelier_data

def plot(ax, strike, dip, rake, **kwargs):
    ax.rake(strike, dip, rake, 'ko', markersize=2)
    ax.density_contour(strike, dip, rake, measurement='rakes', linewidths=1,
                       cmap='jet', **kwargs)


# Load data from Angelier, 1979
strike, dip, rake = parse_angelier_data.load()

# Setup a subplot grid
fig, axes = mplstereonet.subplots(nrows=3, ncols=4)

# Hide azimuth tick labels
for ax in axes.flat:
    ax.set_azimuth_ticks([])

contours = [range(2, 18, 2), range(1, 21, 2), range(1, 22, 2)]

# "Standard" Kamb contouring with different confidence levels.
for sigma, ax, contour in zip([3, 2, 1], axes[:, 0], contours):
    # We're reducing the gridsize to more closely match a traditional
    # hand-contouring grid, similar to Kamb's original work and Vollmer's
    # Figure 5. `gridsize=10` produces a 10x10 grid of density estimates.
    plot(ax, strike, dip, rake, method='kamb', sigma=sigma,
        levels=contour, gridsize=10)

# Kamb contouring with inverse-linear smoothing (after Vollmer, 1995)
for sigma, ax, contour in zip([3, 2, 1], axes[:, 1], contours):
    plot(ax, strike, dip, rake, method='linear_kamb', sigma=sigma,
        levels=contour)
    template = r'$E={}\sigma$ Contours: ${}\sigma,{}\sigma,\ldots$'
    ax.set_xlabel(template.format(sigma, *contour[:2]))

# Kamb contouring with exponential smoothing (after Vollmer, 1995)
for sigma, ax, contour in zip([3, 2, 1], axes[:, 2], contours):
    plot(ax, strike, dip, rake, method='exponential_kamb', sigma=sigma,
        levels=contour)

# Title the different methods
methods = ['Kamb', 'Linear\nSmoothing', 'Exponential\nSmoothing']
for ax, title in zip(axes[0, :], methods):
    ax.set_title(title)

# Hide top-right axis... (Need to implement Diggle & Fisher's method)
axes[0, -1].set_visible(False)

# Schmidt contouring (a.k.a. 1%)
plot(axes[1, -1], strike, dip, rake, method='schmidt', gridsize=25,
     levels=range(3, 20, 3))
axes[1, -1].set_title('Schmidt')
axes[1, -1].set_xlabel(r'Contours: $3\%,6\%,\ldots$')

# Raw data.
axes[-1, -1].set_azimuth_ticks([])
axes[-1, -1].rake(strike, dip, rake, 'ko', markersize=2)
axes[-1, -1].set_xlabel('N={}'.format(len(strike)))

plt.show()






Result

[image: ../_images/contour_angelier_data_0.png]






          

      

      

    

  

    
      
          
            
  
contour_normal_vectors.py

Illustrates plotting normal vectors in “world” coordinates as orientations on a
stereonet.

import numpy as np
import matplotlib.pyplot as plt
import mplstereonet

# Load in a series of normal vectors from a triangulated normal fault surface
normals = np.loadtxt('normal_vectors.txt')
x, y, z = normals.T

# Convert these to plunge/bearings for plotting.
# Alternately, we could use xyz2stereonet (it doesn't correct for bi-directional
# measurements, however) or vector2pole.
plunge, bearing = mplstereonet.vector2plunge_bearing(x, y, z)

# Set up the figure
fig = plt.figure()
ax = fig.add_subplot(111, projection='stereonet')

# Make a density contour plot of the orientations
ax.density_contourf(plunge, bearing, measurement='lines')

# Plot the vectors as points on the stereonet.
ax.line(plunge, bearing, marker='o', color='black')

plt.show()






Result

[image: ../_images/contour_normal_vectors_0.png]






          

      

      

    

  

    
      
          
            
  
contouring.py

A basic example of producing a density contour plot of poles to planes.

import matplotlib.pyplot as plt
import numpy as np
import mplstereonet

# Fix random seed so that output is consistent
np.random.seed(1977)

fig, ax = mplstereonet.subplots()

# Generate a random scatter of planes around the given plane
# All measurements follow the right-hand-rule to indicate dip direction
strike, dip = 90, 80
num = 10
strikes = strike + 10 * np.random.randn(num)
dips = dip + 10 * np.random.randn(num)

# Create filled contours of the poles of the generated planes...
# By default this uses a modified Kamb contouring technique with exponential
# smoothing (See Vollmer, 1995)
cax = ax.density_contourf(strikes, dips, measurement='poles')

# Plot the poles as points on top of the contours
ax.pole(strikes, dips)

# Turn on a grid and add a colorbar
ax.grid(True)
fig.colorbar(cax)
plt.show()






Result

[image: ../_images/contouring_0.png]






          

      

      

    

  

    
      
          
            
  
cross_section_plane.py

In this example two planes are plottet as great circles and poles.
The planes are given as dip-direction/dip and converted to strike/dip.
The strikes and dips are passed to the ‘mplstereonet.fit_girdle()’ function
that calculates the best fitting plane for the poles of the planes.
The resulting plane is the optimal cross-section plane for this structure.
The pole of the resulting plane would correspond to the intersection-linear
when looking at schistosities or the fold-axis when looking at fold-hinges.

import matplotlib.pyplot as plt
import numpy as np
import mplstereonet

fig, ax = mplstereonet.subplots()

dip_directions = [100, 200]
dips = [30, 40]
strikes = np.array(dip_directions) - 90

ax.pole(strikes, dips, "bo")
ax.plane(strikes, dips, color='black', lw=1)

fit_strike, fit_dip = mplstereonet.fit_girdle(strikes, dips)

ax.plane(fit_strike, fit_dip, color='red', lw=1)
ax.pole(fit_strike, fit_dip, marker='o', color='red', markersize=5)

plt.show()






Result

[image: ../_images/cross_section_plane_0.png]






          

      

      

    

  

    
      
          
            
  
equal_area_equal_angle_comparison.py

A quick visual comparison of equal area vs. equal angle nets.

import matplotlib.pyplot as plt
import mplstereonet

fig = plt.figure()

# Make an "equal area" (a.k.a. "Schmidt") stereonet
# (Lambert Azimuthal Equal Area Projection)
ax1 = fig.add_subplot(1,2,1, projection='equal_area_stereonet')

# Make an "equal angle" (a.k.a. "Wulff" or "True") stereonet
# (Stereographic projection)
ax2 = fig.add_subplot(1,2,2, projection='equal_angle_stereonet')

# Plot the same thing on both
for ax in [ax1, ax2]:
    ax.grid(True)
    ax.set_azimuth_ticklabels([])
    ax.plane(315, 20)
    ax.line([20, 30, 40], [110, 265, 170])

ax1.set_title('Equal Area (a.k.a. "Schmidt")')
ax2.set_title('Equal Angle (a.k.a. "Wulff")')

# Make the subplots fit a bit more compactly (purely cosmetic)
fig.subplots_adjust(hspace=0, wspace=0.05, left=0.01, bottom=0.1, right=0.99)

fig.suptitle('Comparison of Equal Area and Equal Angle Stereonets\n'
             'Same Data Plotted on Both', y=0.1)
plt.show()






Result

[image: ../_images/equal_area_equal_angle_comparison_0.png]






          

      

      

    

  

    
      
          
            
  
fault_slip_plot.py

Illustrates two different methods of plotting fault slip data.

A fault-and-striae diagram is the traditional method.  The tangent-lineation
diagram follows Twiss & Unruh, 1988 (this style was originally introduced by
Goldstein & Marshak, 1988 and also by Hoeppener, 1955, but both used the opposite
convention for arrow direction).

import matplotlib.pyplot as plt
import numpy as np
import mplstereonet

import parse_angelier_data

def main():
    # Load data from Angelier, 1979
    strikes, dips, rakes = parse_angelier_data.load()

    params = dict(projection='stereonet', azimuth_ticks=[])
    fig, (ax1, ax2) = plt.subplots(ncols=2, subplot_kw=params)

    fault_and_striae_plot(ax1, strikes, dips, rakes)
    ax1.set_title('Fault-and-Striae Diagram')
    ax1.set_xlabel('Lineation direction plotted\nat rake location on plane')

    tangent_lineation_plot(ax2, strikes, dips, rakes)
    ax2.set_title('Tangent Lineation Diagram')
    ax2.set_xlabel('Lineation direction plotted\nat pole location of plane')

    fig.suptitle('Fault-slip data from Angelier, 1979', y=0.05)
    fig.tight_layout()

    plt.show()

def fault_and_striae_plot(ax, strikes, dips, rakes):
    """Makes a fault-and-striae plot (a.k.a. "Ball of String") for normal faults
    with the given strikes, dips, and rakes."""
    # Plot the planes
    lines = ax.plane(strikes, dips, 'k-', lw=0.5)

    # Calculate the position of the rake of the lineations, but don't plot yet
    x, y = mplstereonet.rake(strikes, dips, rakes)

    # Calculate the direction the arrows should point
    # These are all normal faults, so the arrows point away from the center
    # For thrusts, it would just be u, v = -x/mag, -y/mag
    mag = np.hypot(x, y)
    u, v = x / mag, y / mag

    # Plot the arrows at the rake locations...
    arrows = ax.quiver(x, y, u, v, width=1, headwidth=4, units='dots')
    return lines, arrows

def tangent_lineation_plot(ax, strikes, dips, rakes):
    """Makes a tangent lineation plot for normal faults with the given strikes,
    dips, and rakes."""
    # Calculate the position of the rake of the lineations, but don't plot yet
    rake_x, rake_y = mplstereonet.rake(strikes, dips, rakes)

    # Calculate the direction the arrows should point
    # These are all normal faults, so the arrows point away from the center
    # Because we're plotting at the pole location, however, we need to flip this
    # from what we plotted with the "ball of string" plot.
    mag = np.hypot(rake_x, rake_y)
    u, v = -rake_x / mag, -rake_y / mag

    # Calculate the position of the poles
    pole_x, pole_y = mplstereonet.pole(strikes, dips)

    # Plot the arrows centered on the pole locations...
    arrows = ax.quiver(pole_x, pole_y, u, v, width=1, headwidth=4, units='dots',
                       pivot='middle')
    return arrows

if __name__ == '__main__':
    main()






Result

[image: ../_images/fault_slip_plot_0.png]






          

      

      

    

  

    
      
          
            
  
fisher_stats.py

This example shows how the Fisher statistics can be computed and displayed.

Based on example 5.21 and example 5.23 in [Fisher1993].








	Data in:

	Table B2

	(page 279)



	Mean Vector:

	144.2/57.2

	(page 130)



	K-Value:

	109

	(page 130)



	Fisher-Angle:

	2.7 deg.

	(page 132)







Reference


	Fisher1993

	Fisher, N.I., Lewis, T., Embleton, B.J.J. (1993) “Statistical
Analysis of Spherical Data”





import matplotlib.pyplot as plt
import mplstereonet as mpl


decl = [122.5, 130.5, 132.5, 148.5, 140.0, 133.0, 157.5, 153.0, 140.0, 147.5,
        142.0, 163.5, 141.0, 156.0, 139.5, 153.5, 151.5, 147.5, 141.0, 143.5,
        131.5, 147.5, 147.0, 149.0, 144.0, 139.5]
incl = [55.5, 58.0, 44.0, 56.0, 63.0, 64.5, 53.0, 44.5, 61.5, 54.5, 51.0, 56.0,
        59.5, 56.5, 54.0, 47.5, 61.0, 58.5, 57.0, 67.5, 62.5, 63.5, 55.5, 62.0,
        53.5, 58.0]
confidence = 95

fig = plt.figure()
ax = fig.add_subplot(111, projection='stereonet')
ax.line(incl, decl, color="black", markersize=2)

vector, stats = mpl.find_fisher_stats(incl, decl, conf=confidence)

template = (u"Mean Vector P/B: {plunge:0.0f}\u00B0/{bearing:0.0f}\u00B0\n"
            "Confidence: {conf}%\n"
            u"Fisher Angle: {fisher:0.2f}\u00B0\n"
            u"R-Value {r:0.3f}\n"
            "K-Value: {k:0.2f}")

label = template.format(plunge=vector[0], bearing=vector[1], conf=confidence,
                        r=stats[0], fisher=stats[1], k=stats[2])

ax.line(vector[0], vector[1], color="red", label=label)
ax.cone(vector[0], vector[1], stats[1], facecolor="None", edgecolor="red")

ax.legend(bbox_to_anchor=(1.1, 1.1), numpoints=1)
plt.show()








Result

[image: ../_images/fisher_stats_0.png]






          

      

      

    

  

    
      
          
            
  
fit_girdle_example.py

Illustrates fitting a plane to a “gridle” distribution using fit_girdle.

This example simulates finding the plunge and bearing of a cylindrical fold
axis from strike/dip measurements of bedding in the fold limbs.

import numpy as np
import matplotlib.pyplot as plt
import mplstereonet
np.random.seed(1)

# Generate a random girdle distribution from the plunge/bearing of a fold hinge
# In the end, we'll have strikes and dips as measured from bedding in the fold.
# *strike* and *dip* below would normally be your input.
num_points = 200
real_bearing, real_plunge = 300, 5
s, d = mplstereonet.plunge_bearing2pole(real_plunge, real_bearing)
lon, lat = mplstereonet.plane(s, d, segments=num_points)
lon += np.random.normal(0, np.radians(15), lon.shape)
lat += np.random.normal(0, np.radians(15), lat.shape)
strike, dip = mplstereonet.geographic2pole(lon, lat)

# Plot the raw data and contour it:
fig, ax = mplstereonet.subplots()
ax.density_contourf(strike, dip, cmap='gist_earth')
ax.density_contour(strike, dip, colors='black')
ax.pole(strike, dip, marker='.', color='black')

# Fit a plane to the girdle of the distribution and display it.
fit_strike, fit_dip = mplstereonet.fit_girdle(strike, dip)
ax.plane(fit_strike, fit_dip, color='red', lw=2)
ax.pole(fit_strike, fit_dip, marker='o', color='red', markersize=14)

# Add some annotation of the result
lon, lat = mplstereonet.pole(fit_strike, fit_dip)
(plunge,), (bearing,) = mplstereonet.pole2plunge_bearing(fit_strike, fit_dip)
template = u'P/B of Fold Axis\n{:02.0f}\u00b0/{:03.0f}\u00b0'
ax.annotate(template.format(plunge, bearing), ha='center', va='bottom',
            xy=(lon, lat), xytext=(-50, 20), textcoords='offset points',
            arrowprops=dict(arrowstyle='-|>', facecolor='black'))

plt.show()






Result

[image: ../_images/fit_girdle_example_0.png]






          

      

      

    

  

    
      
          
            
  
kmeans_example.py

Illustrates finding the average strike and dip of two conjugate sets of faults.

This uses a kmeans approach modified to work with bidirectional orientation
measurements in 3D (mplstereonet.kmeans).

import matplotlib.pyplot as plt
import mplstereonet

import parse_angelier_data

# Load data from Angelier, 1979
strike, dip, rake = parse_angelier_data.load()

# Plot the raw data and contour it:
fig, ax = mplstereonet.subplots()
#ax.density_contourf(strike, dip, rake, measurement='rakes', cmap='gist_earth',
#                    sigma=1.5)
ax.density_contour(strike, dip, rake, measurement='rakes', cmap='gist_earth',
                    sigma=1.5)
ax.rake(strike, dip, rake, marker='.', color='black')

# Find the two modes
centers = mplstereonet.kmeans(strike, dip, rake, num=2, measurement='rakes')
strike_cent, dip_cent = mplstereonet.geographic2pole(*zip(*centers))
ax.pole(strike_cent, dip_cent, 'ro', ms=12)

# Label the modes
for (x0, y0) in centers:
    s, d = mplstereonet.geographic2pole(x0, y0)
    x, y = mplstereonet.pole(s, d) # Otherwise, we may get the antipode...

    if x > 0:
        kwargs = dict(xytext=(40, -40), ha='left')
    else:
        kwargs = dict(xytext=(-40, 40), ha='right')

    ax.annotate('{:03.0f}/{:03.0f}'.format(s[0], d[0]), xy=(x, y),
                xycoords='data', textcoords='offset points',
                arrowprops=dict(arrowstyle='->', connectionstyle='angle3'),
                **kwargs)

ax.set_title('Strike/dip of conjugate fault sets', y=1.07)

plt.show()






Result

[image: ../_images/kmeans_example_0.png]






          

      

      

    

  

    
      
          
            
  
multiple_planes.py

plane, rake, line, etc all allow plotting of multiple measurements.

import matplotlib.pyplot as plt
import mplstereonet

# Make a figure with a single stereonet axes
fig, ax = mplstereonet.subplots()

# These follow the right hand rule to indicate dip direction
strikes = [22, 317, 170, 220]
dips = [10, 20, 30, 40]

# Plot the planes.
ax.plane(strikes, dips)

# Make only a single "N" azimuth tick label.
ax.set_azimuth_ticks([0], labels=['N'])

plt.show()






Result

[image: ../_images/multiple_planes_0.png]






          

      

      

    

  

    
      
          
            
  
parse_angelier_data.py

This is meant to serve as an example of slightly more complex parsing of
orientation measurements.

Angelier, 1979’s seminal paper on paleostress determination includes a table
of slickenslide measurements from normal faults.

However, some of the measurements are rakes, while others are strike/dip and an
azimuth of the slickenslides (“Rake” measurements without a direction letter
are actually azimuthal measurements.).

Furthermore, the measurements do not follow the right-hand-rule for indicating
dip direction of a plane and they indicate rake direction using a directional
letter.

To unify the measurements for plotting, etc, we need to parse all of the
measurements, and convert the azimuth measurements to rakes.

import os
import matplotlib.pyplot as plt
import mplstereonet

def main():
    strike, dip, rake = load()

    # Plot the data.
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='stereonet')
    ax.rake(strike, dip, rake, 'ro')
    plt.show()

def load():
    """Read data from a text file on disk."""
    # Get the data file relative to this file's location...
    datadir = os.path.dirname(__file__)
    filename = os.path.join(datadir, 'angelier_data.txt')

    data = []
    with open(filename, 'r') as infile:
        for line in infile:
            # Skip comments
            if line.startswith('#'):
                continue

            # First column: strike, second: dip, third: rake.
            strike, dip, rake = line.strip().split()

            if rake[-1].isalpha():
                # If there's a directional letter on the rake column, parse it
                # normally.
                strike, dip, rake = mplstereonet.parse_rake(strike, dip, rake)
            else:
                # Otherwise, it's actually an azimuthal measurement of the
                # slickenslide directions, so we need to convert it to a rake.
                strike, dip = mplstereonet.parse_strike_dip(strike, dip)
                azimuth = float(rake)
                rake = mplstereonet.azimuth2rake(strike, dip, azimuth)

            data.append([strike, dip, rake])

    # Separate the columns back out
    strike, dip, rake = zip(*data)
    return strike, dip, rake

if __name__ == '__main__':
    main()






Result

[image: ../_images/parse_angelier_data_0.png]






          

      

      

    

  

    
      
          
            
  
parsing_example.py

Basic quadrant, strike/dip, and rake parsing.

mplstereonet expects measurements to follow the
“right-hand-rule” (RHR) to indicate dip direction.

If you have a set of measurements that don’t necessarily follow the RHR, there
are a number of parsing and standardization functions in mplstereonet to
correct for this.

import mplstereonet

print('Parse quadrant azimuth measurements')
for original in ['N30E', 'E30N', 'W10S', 'N 10 W']:
    azi = mplstereonet.parse_quadrant_measurement(original)
    print('"{}" --> {:.1f}'.format(original, azi))

print('\nParse quadrant strike/dip measurements.')
print('Note that the output follows the right-hand-rule.')

def parse_sd(original, seperator):
    strike, dip = mplstereonet.parse_strike_dip(*original.split(seperator))
    print('"{}" --> Strike: {:.1f}, Dip: {:.1f}'.format(original, strike, dip))

parse_sd('215/10', '/')
parse_sd('215/10E', '/')
parse_sd('215/10NW', '/')
parse_sd('N30E/45NW', '/')
parse_sd('E10N\t20 N', '\t')
parse_sd('W30N/46.7 S', '/')

print("\nSimilarly, you can parse rake measurements that don't follow the RHR.")

def split_rake(original, sep1=None, sep2=None):
    components = original.split(sep1)
    if len(components) == 3:
        return components
    strike, rest = components
    dip, rake = rest.split(sep2)
    return strike, dip, rake

def display_rake(original, sep1, sep2=None):
    components = split_rake(original, sep1, sep2)
    strike, dip, rake = mplstereonet.parse_rake(*components)
    template = '"{}" --> Strike: {:.1f}, Dip: {:.1f}, Rake: {:.1f}'
    print(template.format(original, strike, dip, rake))

original = 'N30E/45NW 10NE'
display_rake(original, '/')

original = '210 45\t30N'
display_rake(original, None)

original = 'N30E/45NW raking 10SW'
display_rake(original, '/', 'raking')






Result

Parse quadrant azimuth measurements
"N30E" --> 30.0
"E30N" --> 60.0
"W10S" --> 260.0
"N 10 W" --> 350.0

Parse quadrant strike/dip measurements.
Note that the output follows the right-hand-rule.
"215/10" --> Strike: 215.0, Dip: 10.0
"215/10E" --> Strike: 35.0, Dip: 10.0
"215/10NW" --> Strike: 215.0, Dip: 10.0
"N30E/45NW" --> Strike: 210.0, Dip: 45.0
"E10N       20 N" --> Strike: 260.0, Dip: 20.0
"W30N/46.7 S" --> Strike: 120.0, Dip: 46.7

Similarly, you can parse rake measurements that don't follow the RHR.
"N30E/45NW 10NE" --> Strike: 210.0, Dip: 45.0, Rake: 170.0
"210 45     30N" --> Strike: 210.0, Dip: 45.0, Rake: 150.0
"N30E/45NW raking 10SW" --> Strike: 210.0, Dip: 45.0, Rake: 10.0











          

      

      

    

  

    
      
          
            
  
plane_intersection.py

Find the intersection of two planes and plot it.

import matplotlib.pyplot as plt
import mplstereonet

strike1, dip1 = 315, 30
strike2, dip2 = 120, 40

fig, ax = mplstereonet.subplots()

# Plot the two planes...
ax.plane(strike1, dip1)
ax.plane(strike2, dip2)

# Find the intersection of the two as a plunge/bearing
plunge, bearing = mplstereonet.plane_intersection(strike1, dip1, strike2, dip2)

# Plot the plunge/bearing
ax.line(plunge, bearing, marker='*', markersize=15)

plt.show()






Result

[image: ../_images/plane_intersection_0.png]






          

      

      

    

  

    
      
          
            
  
polar_overlay.py

Demonstrates adding both polar and arbitrary grid overlays on a stereonet.
Changing the grid overlay does not change the representation of the data.
Notice that the plane, pole, and rake are all displayed identically in each
case.  Only the grid lines change.

import matplotlib.pyplot as plt
import mplstereonet

def main():
    # Display the data with a polar grid
    ax1 = basic()
    ax1.grid(kind='polar')
    ax1.set_title('Polar overlay on a Stereonet', y=1.1)

    # Display the data with a grid centered on the pole to the plotted plane.
    ax2 = basic()
    ax2.grid(center=mplstereonet.pole(315, 30))
    ax2.set_title('Arbitrary overlay on a Stereonet', y=1.1)

    plt.show()

def basic():
    """Set up a basic stereonet and plot the same data each time."""
    fig, ax = mplstereonet.subplots()

    strike, dip = 315, 30
    ax.plane(strike, dip, color='lightblue')
    ax.pole(strike, dip, color='green', markersize=15)
    ax.rake(strike, dip, 40, marker='*', markersize=20, color='green')

    # Make a bit of room for the title...
    fig.subplots_adjust(top=0.8)

    return ax

if __name__ == '__main__':
    main()






Result

[image: ../_images/polar_overlay_0.png]
[image: ../_images/polar_overlay_1.png]






          

      

      

    

  

    
      
          
            
  
rotation_example.py

As an exmaple of basic functionality, let’s plot a plane, the pole to the
plane, and a rake along the plane.

import matplotlib.pyplot as plt
import mplstereonet

fig = plt.figure()

# An un-rotated axes
ax1 = fig.add_subplot(121, projection='stereonet')

# Rotated 30 degrees clockwise from North
ax2 = fig.add_subplot(122, projection='stereonet', rotation=30)

# Measurements follow the right-hand-rule to indicate dip direction
strike, dip = 315, 30

# Plot the same data on both axes
for ax in [ax1, ax2]:
    ax.plane(strike, dip, 'g-', linewidth=2)
    ax.pole(strike, dip, 'g^', markersize=18)
    ax.rake(strike, dip, -25)

    ax.grid()

plt.show()






Result

[image: ../_images/rotation_example_0.png]






          

      

      

    

  

    
      
          
            
  
scatter.py

Example of how ax.scatter can be used to plot linear data on a stereonet
varying color and/or size by other variables.

This also serves as a general example of how to convert orientation data into
the coordinate system that the stereonet plot uses so that generic matplotlib
plotting methods may be used.

import numpy as np
import matplotlib.pyplot as plt
import mplstereonet
np.random.seed(1)

strikes = np.arange(0, 360, 15)
dips = 45 * np.ones(strikes.size)
magnitude = np.random.random(strikes.size)

# Convert our strikes and dips to stereonet coordinates
lons, lats = mplstereonet.pole(strikes, dips)

# Now we'll plot our data and color by magnitude
fig, ax = mplstereonet.subplots()
sm = ax.scatter(lons, lats, c=magnitude, s=50, cmap='gist_earth')

ax.grid()
plt.show()






Result

[image: ../_images/scatter_0.png]






          

      

      

    

  

    
      
          
            
  
stereonet_explanation.py

This figure illustrates the difference between the “internal” coordinate
system of longitude and latitude that plotting actually takes place in (e.g.
if you were to use ax.plot or any other “raw” matplotlib command) and the
conceptual coordinate system that a lower-hemisphere stereonet represents.

import matplotlib.pyplot as plt
import numpy as np
import mplstereonet

def main():
    fig, (ax1, ax2) = setup_figure()
    stereonet_projection_explanation(ax1)
    native_projection_explanation(ax2)
    plt.show()

def setup_figure():
    """Setup the figure and axes"""
    fig, axes = mplstereonet.subplots(ncols=2, figsize=(20,10))
    for ax in axes:
        # Make the grid lines solid.
        ax.grid(ls='-')
        # Make the longitude grids continue all the way to the poles
        ax.set_longitude_grid_ends(90)
    return fig, axes

def stereonet_projection_explanation(ax):
    """Example to explain azimuth and dip on a lower-hemisphere stereonet."""
    ax.set_title('Dip and Azimuth', y=1.1, size=18)

    # Set the azimuth ticks to be just "N", "E", etc.
    ax.set_azimuth_ticks(range(0, 360, 10))

    # Hackishly set some of the azimuth labels to North, East, etc...
    fmt = ax.yaxis.get_major_formatter()
    labels = [fmt(item) for item in ax.get_azimuth_ticks()]
    labels[0] = 'North'
    labels[9] = 'East'
    labels[18] = 'South'
    labels[27] = 'West'
    ax.set_azimuth_ticklabels(labels)

    # Unhide the xticklabels and use them for dip labels
    ax.xaxis.set_tick_params(label1On=True)
    labels = list(range(10, 100, 10)) + list(range(80, 0, -10))
    ax.set_xticks(np.radians(np.arange(-80, 90, 10)))
    ax.set_xticklabels([fmt(np.radians(item)) for item in labels])

    ax.set_xlabel('Dip or Plunge')

    xlabel_halo(ax)
    return ax

def native_projection_explanation(ax):
    """Example showing how the "native" longitude and latitude relate to the
    stereonet projection."""
    ax.set_title('Longitude and Latitude', size=18, y=1.1)

    # Hide the azimuth labels
    ax.set_azimuth_ticklabels([])

    # Make the axis tick labels visible:
    ax.set_xticks(np.radians(np.arange(-80, 90, 10)))
    ax.tick_params(label1On=True)

    ax.set_xlabel('Longitude')

    xlabel_halo(ax)
    return ax

def xlabel_halo(ax):
    """Add a white "halo" around the xlabels."""
    import matplotlib.patheffects as effects
    for tick in ax.get_xticklabels() + [ax.xaxis.label]:
        tick.set_path_effects([effects.withStroke(linewidth=4, foreground='w')])

if __name__ == '__main__':
    main()






Result

[image: ../_images/stereonet_explanation_0.png]






          

      

      

    

  

    
      
          
            
  
two_point.py

Demonstrates plotting multiple linear features with a single ax.pole call.

The real purpose of this example is to serve as an implicit regression test for
some oddities in the way axes grid lines are handled in matplotlib and
mplstereonet.  A 2-vertex line can sometimes be confused for an axes grid line,
and they need different handling on a stereonet.

import matplotlib.pyplot as plt
import mplstereonet

fig, ax = mplstereonet.subplots(figsize=(7,7))
strike = [200, 250]
dip = [50, 60]
ax.pole(strike, dip, 'go', markersize=10)
ax.grid()
plt.show()






Result

[image: ../_images/two_point_0.png]






          

      

      

    

  

    
      
          
            
  
mplstereonet Package


mplstereonet Package


	
class mplstereonet.StereonetAxes(*args, **kwargs)

	Bases: matplotlib.projections.geo.LambertAxes

An axes representing a lower-hemisphere “schmitt” (a.k.a. equal area)
projection.


	
__init__(self, *args, **kwargs)

	Initialization is identical to a normal Axes object except for the
following kwarg:


	Parameters

	
	rotationnumber

	The rotation of the stereonet in degrees clockwise from North.



	center_latitudenumber

	The center latitude of the stereonet in degrees.



	center_longitudenumber

	The center longitude of the stereonet in degrees.



	All additional args and kwargs are identical to Axes.__init__

	












	
cla(self)

	Clear the current axes.






	
cone(self, plunge, bearing, angle, segments=100, bidirectional=True, **kwargs)

	Plot a polygon of a small circle (a.k.a. a cone) with an angular radius
of angle centered at a p/b of plunge, bearing. Additional keyword
arguments are passed on to the PathCollection.  (e.g. to have an
unfilled small small circle, pass “facecolor=’none’”.)


	Parameters

	
	plungenumber or sequence of numbers

	The plunge of the center of the cone in degrees.



	bearingnumber or sequence of numbers

	The bearing of the center of the cone in degrees.



	anglenumber or sequence of numbers

	The angular radius of the cone in degrees.



	segmentsint, optional

	The number of vertices to use for the cone. Defaults to 100.



	bidirectionalboolean, optional

	Whether or not to draw two patches (the one given and its antipode)
for each measurement. Defaults to True.



	**kwargs

	Additional parameters are matplotlib.collections.PatchCollection
properties.







	Returns

	
	collectionmatplotlib.collections.PathCollection

	







Notes

If bidirectional is True, two circles will be plotted, even if
only one of each pair is visible. This is the default behavior.






	
density_contour(self, *args, **kwargs)

	Estimates point density of the given linear orientation measurements
(Interpreted as poles, lines, rakes, or “raw” longitudes and latitudes
based on the measurement keyword argument.) and plots contour lines of
the resulting density distribution.


	Parameters

	
	*argsA variable number of sequences of measurements.

	By default, this will be expected to be strike & dip, both
array-like sequences representing poles to planes.  (Rake
measurements require three parameters, thus the variable number of
arguments.) The measurement kwarg controls how these arguments
are interpreted.



	measurementstring, optional

	Controls how the input arguments are interpreted. Defaults to
"poles".  May be one of the following:



	"poles"strikes, dips

	Arguments are assumed to be sequences of strikes and dips
of planes. Poles to these planes are used for contouring.



	"lines"plunges, bearings

	Arguments are assumed to be sequences of plunges and
bearings of linear features.



	"rakes"strikes, dips, rakes

	Arguments are assumed to be sequences of strikes, dips, and
rakes along the plane.



	"radians"lon, lat

	Arguments are assumed to be “raw” longitudes and latitudes
in the stereonet’s underlying coordinate system.










	methodstring, optional

	The method of density estimation to use. Defaults to
"exponential_kamb". May be one of the following:


	"exponential_kamb"Kamb with exponential smoothing

	A modified Kamb method using exponential smoothing [1]. Units
are in numbers of standard deviations by which the density
estimate differs from uniform.



	"linear_kamb"Kamb with linear smoothing

	A modified Kamb method using linear smoothing [1].  Units are
in numbers of standard deviations by which the density estimate
differs from uniform.



	"kamb"Kamb with no smoothing

	Kamb’s method [2] with no smoothing. Units are in numbers of
standard deviations by which the density estimate differs from
uniform.



	"schmidt"1% counts

	The traditional “Schmidt” (a.k.a. 1%) method. Counts points
within a counting circle comprising 1% of the total area of the
hemisphere. Does not take into account sample size.  Units are
in points per 1% area.







	sigmaint or float, optional

	The number of standard deviations defining the expected number of
standard deviations by which a random sample from a uniform
distribution of points would be expected to vary from being evenly
distributed across the hemisphere.  This controls the size of the
counting circle, and therefore the degree of smoothing.  Higher
sigmas will lead to more smoothing of the resulting density
distribution. This parameter only applies to Kamb-based methods.
Defaults to 3.



	gridsizeint or 2-item tuple of ints, optional

	The size of the grid that the density is estimated on. If a single
int is given, it is interpreted as an NxN grid. If a tuple of ints
is given it is interpreted as (nrows, ncols).  Defaults to 100.



	weightsarray-like, optional

	The relative weight to be applied to each input measurement. The
array will be normalized to sum to 1, so absolute value of the
weights do not affect the result. Defaults to None.



	**kwargs

	Additional keyword arguments are passed on to matplotlib’s
contour function.







	Returns

	
	A matplotlib ContourSet.

	








See also


	mplstereonet.density_grid

	

	mplstereonet.StereonetAxes.density_contourf

	

	matplotlib.pyplot.contour

	

	matplotlib.pyplot.clabel

	





References


	1(1,2,3)

	Vollmer, 1995. C Program for Automatic Contouring of Spherical
Orientation Data Using a Modified Kamb Method. Computers &
Geosciences, Vol. 21, No. 1, pp. 31–49.



	2(1,2)

	Kamb, 1959. Ice Petrofabric Observations from Blue Glacier,
Washington, in Relation to Theory and Experiment. Journal of
Geophysical Research, Vol. 64, No. 11, pp. 1891–1909.





Examples

Plot density contours of poles to the specified planes using a
modified Kamb method with exponential smoothing [1].

>>> strikes, dips = [120, 315, 86], [22, 85, 31]
>>> ax.density_contour(strikes, dips)





Plot density contours of a set of linear orientation measurements.

>>> plunges, bearings = [-10, 20, -30], [120, 315, 86]
>>> ax.density_contour(plunges, bearings, measurement='lines')





Plot density contours of a set of rake measurements.

>>> strikes, dips, rakes = [120, 315, 86], [22, 85, 31], [-5, 20, 9]
>>> ax.density_contour(strikes, dips, rakes, measurement='rakes')





Plot density contours of a set of “raw” longitudes and latitudes.

>>> lon, lat = np.radians([-40, 30, -85]), np.radians([21, -59, 45])
>>> ax.density_contour(lon, lat, measurement='radians')





Plot density contours of poles to planes using a Kamb method [2]
with the density estimated on a 10x10 grid (in long-lat space)

>>> strikes, dips = [120, 315, 86], [22, 85, 31]
>>> ax.density_contour(strikes, dips, method='kamb', gridsize=10)





Plot density contours of poles to planes with contours at [1,2,3]
standard deviations.

>>> strikes, dips = [120, 315, 86], [22, 85, 31]
>>> ax.density_contour(strikes, dips, levels=[1,2,3])










	
density_contourf(self, *args, **kwargs)

	Estimates point density of the given linear orientation measurements
(Interpreted as poles, lines, rakes, or “raw” longitudes and latitudes
based on the measurement keyword argument.) and plots filled contours
of the resulting density distribution.


	Parameters

	
	*argsA variable number of sequences of measurements.

	By default, this will be expected to be strike & dip, both
array-like sequences representing poles to planes.  (Rake
measurements require three parameters, thus the variable number of
arguments.) The measurement kwarg controls how these arguments
are interpreted.



	measurementstring, optional

	Controls how the input arguments are interpreted. Defaults to
"poles".  May be one of the following:



	"poles"strikes, dips

	Arguments are assumed to be sequences of strikes and dips
of planes. Poles to these planes are used for contouring.



	"lines"plunges, bearings

	Arguments are assumed to be sequences of plunges and
bearings of linear features.



	"rakes"strikes, dips, rakes

	Arguments are assumed to be sequences of strikes, dips, and
rakes along the plane.



	"radians"lon, lat

	Arguments are assumed to be “raw” longitudes and latitudes
in the stereonet’s underlying coordinate system.










	methodstring, optional

	The method of density estimation to use. Defaults to
"exponential_kamb". May be one of the following:


	"exponential_kamb"Kamb with exponential smoothing

	A modified Kamb method using exponential smoothing [1]. Units
are in numbers of standard deviations by which the density
estimate differs from uniform.



	"linear_kamb"Kamb with linear smoothing

	A modified Kamb method using linear smoothing [1].  Units are
in numbers of standard deviations by which the density estimate
differs from uniform.



	"kamb"Kamb with no smoothing

	Kamb’s method [2] with no smoothing. Units are in numbers of
standard deviations by which the density estimate differs from
uniform.



	"schmidt"1% counts

	The traditional “Schmidt” (a.k.a. 1%) method. Counts points
within a counting circle comprising 1% of the total area of the
hemisphere. Does not take into account sample size.  Units are
in points per 1% area.







	sigmaint or float, optional

	The number of standard deviations defining the expected number of
standard deviations by which a random sample from a uniform
distribution of points would be expected to vary from being evenly
distributed across the hemisphere.  This controls the size of the
counting circle, and therefore the degree of smoothing.  Higher
sigmas will lead to more smoothing of the resulting density
distribution. This parameter only applies to Kamb-based methods.
Defaults to 3.



	gridsizeint or 2-item tuple of ints, optional

	The size of the grid that the density is estimated on. If a single
int is given, it is interpreted as an NxN grid. If a tuple of ints
is given it is interpreted as (nrows, ncols).  Defaults to 100.



	weightsarray-like, optional

	The relative weight to be applied to each input measurement. The
array will be normalized to sum to 1, so absolute value of the
weights do not affect the result. Defaults to None.



	**kwargs

	Additional keyword arguments are passed on to matplotlib’s
contourf function.







	Returns

	
	A matplotlib QuadContourSet.

	








See also


	mplstereonet.density_grid

	

	mplstereonet.StereonetAxes.density_contour

	

	matplotlib.pyplot.contourf

	

	matplotlib.pyplot.clabel

	





References


	1(1,2,3)

	Vollmer, 1995. C Program for Automatic Contouring of Spherical
Orientation Data Using a Modified Kamb Method. Computers &
Geosciences, Vol. 21, No. 1, pp. 31–49.



	2(1,2)

	Kamb, 1959. Ice Petrofabric Observations from Blue Glacier,
Washington, in Relation to Theory and Experiment. Journal of
Geophysical Research, Vol. 64, No. 11, pp. 1891–1909.





Examples

Plot filled density contours of poles to the specified planes using
a modified Kamb method with exponential smoothing [1].

>>> strikes, dips = [120, 315, 86], [22, 85, 31]
>>> ax.density_contourf(strikes, dips)





Plot filled density contours of a set of linear orientation
measurements.

>>> plunges, bearings = [-10, 20, -30], [120, 315, 86]
>>> ax.density_contourf(plunges, bearings, measurement='lines')





Plot filled density contours of a set of rake measurements.

>>> strikes, dips, rakes = [120, 315, 86], [22, 85, 31], [-5, 20, 9]
>>> ax.density_contourf(strikes, dips, rakes, measurement='rakes')





Plot filled density contours of a set of “raw” longitudes and
latitudes.

>>> lon, lat = np.radians([-40, 30, -85]), np.radians([21, -59, 45])
>>> ax.density_contourf(lon, lat, measurement='radians')





Plot filled density contours of poles to planes using a Kamb method
[2] with the density estimated on a 10x10 grid (in long-lat space)

>>> strikes, dips = [120, 315, 86], [22, 85, 31]
>>> ax.density_contourf(strikes, dips, method='kamb', gridsize=10)





Plot filled density contours of poles to planes with contours at
[1,2,3] standard deviations.

>>> strikes, dips = [120, 315, 86], [22, 85, 31]
>>> ax.density_contourf(strikes, dips, levels=[1,2,3])










	
format_coord(self, x, y)

	Format displayed coordinates during mouseover of axes.






	
get_azimuth_ticklabels(self, minor=False)

	Get the azimuth tick labels as a list of Text artists.






	
get_rotation(self)

	The rotation of the stereonet in degrees clockwise from North.






	
grid(self, b=None, which='major', axis='both', kind='arbitrary', center=None, **kwargs)

	
Usage is identical to a normal axes grid except for the kind and
center kwargs.  kind="polar" will add a polar overlay.

The center and kind arguments allow you to add a grid from a
differently-centered stereonet. This is useful for making “polar
stereonets” that still use the same coordinate system as a standard
stereonet.  (i.e. a plane/line/whatever will have the same
representation on both, but the grid is displayed differently.)

To display a polar grid on a stereonet, use kind="polar".

It is also often useful to display a grid relative to an arbitrary
measurement (e.g. a lineation axis).  In that case, use the
lon_center and lat_center arguments.  Note that these are in
radians in “stereonet coordinates”.  Therefore, you’ll often want to
use one of the functions in stereonet_math to convert a
line/plane/rake into the longitude and latitude you’d input here. For
example:  add_overlay(center=stereonet_math.line(plunge, bearing)).

If no parameters are specified, this is equivalent to turning on the
standard grid.
Configure the grid lines.





	Parameters

	
	bbool or None, optional

	Whether to show the grid lines. If any kwargs are supplied,
it is assumed you want the grid on and b will be set to True.

If b is None and there are no kwargs, this toggles the
visibility of the lines.



	which{‘major’, ‘minor’, ‘both’}, optional

	The grid lines to apply the changes on.



	axis{‘both’, ‘x’, ‘y’}, optional

	The axis to apply the changes on.



	**kwargs.Line2D properties

	Define the line properties of the grid, e.g.:

grid(color='r', linestyle='-', linewidth=2)





Valid keyword arguments are:

Properties:
agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha: float or None
animated: bool
antialiased or aa: bool
clip_box: .Bbox
clip_on: bool
clip_path: Patch or (Path, Transform) or None
color or c: color
contains: callable
dash_capstyle: {‘butt’, ‘round’, ‘projecting’}
dash_joinstyle: {‘miter’, ‘round’, ‘bevel’}
dashes: sequence of floats (on/off ink in points) or (None, None)
data: (2, N) array or two 1D arrays
drawstyle or ds: {‘default’, ‘steps’, ‘steps-pre’, ‘steps-mid’, ‘steps-post’}, default: ‘default’
figure: .Figure
fillstyle: {‘full’, ‘left’, ‘right’, ‘bottom’, ‘top’, ‘none’}
gid: str
in_layout: bool
label: object
linestyle or ls: {‘-‘, ‘–’, ‘-.’, ‘:’, ‘’, (offset, on-off-seq), …}
linewidth or lw: float
marker: marker style
markeredgecolor or mec: color
markeredgewidth or mew: float
markerfacecolor or mfc: color
markerfacecoloralt or mfcalt: color
markersize or ms: float
markevery: None or int or (int, int) or slice or List[int] or float or (float, float)
path_effects: .AbstractPathEffect
picker: float or callable[[Artist, Event], Tuple[bool, dict]]
pickradius: float
rasterized: bool or None
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: {‘butt’, ‘round’, ‘projecting’}
solid_joinstyle: {‘miter’, ‘round’, ‘bevel’}
transform: matplotlib.transforms.Transform
url: str
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float









Notes

The axis is drawn as a unit, so the effective zorder for drawing the
grid is determined by the zorder of each axis, not by the zorder of the
.Line2D objects comprising the grid.  Therefore, to set grid zorder,
use .set_axisbelow or, for more control, call the
~matplotlib.axis.Axis.set_zorder method of each axis.






	
line(self, plunge, bearing, *args, **kwargs)

	Plot points representing linear features on the axes. Additional
arguments and keyword arguments are passed on to plot.


	Parameters

	
	plunge, bearingnumber or sequence of numbers

	The plunge and bearing of the line(s) in degrees.  The plunge is
measured in degrees downward from the end of the feature specified
by the bearing.



	**kwargs

	Additional parameters are passed on to plot.







	Returns

	
	A sequence of Line2D artists representing the point(s) specified by

	

	strike and dip.

	












	
plane(self, strike, dip, *args, **kwargs)

	Plot lines representing planes on the axes. Additional arguments and
keyword arguments are passed on to ax.plot.


	Parameters

	
	strike, dipnumber or sequences of numbers

	The strike and dip of the plane(s) in degrees. The dip direction is
defined by the strike following the “right-hand rule”.



	segmentsint, optional

	The number of vertices to use for the line. Defaults to 100.



	**kwargs

	Additional parameters are passed on to plot.







	Returns

	
	A sequence of Line2D artists representing the lines specified by

	

	strike and dip.

	












	
pole(self, strike, dip, *args, **kwargs)

	Plot points representing poles to planes on the axes. Additional
arguments and keyword arguments are passed on to ax.plot.


	Parameters

	
	strike, dipnumbers or sequences of numbers

	The strike and dip of the plane(s) in degrees. The dip direction is
defined by the strike following the “right-hand rule”.



	**kwargs

	Additional parameters are passed on to plot.







	Returns

	
	A sequence of Line2D artists representing the point(s) specified by

	

	strike and dip.

	












	
rake(self, strike, dip, rake_angle, *args, **kwargs)

	Plot points representing lineations along planes on the axes.
Additional arguments and keyword arguments are passed on to plot.


	Parameters

	
	strike, dipnumber or sequences of numbers

	The strike and dip of the plane(s) in degrees. The dip direction is
defined by the strike following the “right-hand rule”.



	rake_anglenumber or sequences of numbers

	The angle of the lineation(s) on the plane(s) measured in degrees
downward from horizontal. Zero degrees corresponds to the “right
hand” direction indicated by the strike, while negative angles are
measured downward from the opposite strike direction.



	**kwargs

	Additional arguments are passed on to plot.







	Returns

	
	A sequence of Line2D artists representing the point(s) specified by

	

	strike and dip.

	












	
rotation

	The rotation of the stereonet in degrees clockwise from North.






	
set_azimuth_ticklabels(self, labels, fontdict=None, **kwargs)

	Sets the labels for the azimuthal ticks.


	Parameters

	
	labelsA sequence of strings

	Azimuth tick labels



	**kwargs

	Additional parameters are text properties for the labels.














	
set_azimuth_ticks(self, angles, labels=None, frac=None, **kwargs)

	Sets the azimuthal tick locations (Note: tick lines are not currently
drawn or supported.).


	Parameters

	
	anglessequence of numbers

	The tick locations in degrees.



	labelssequence of strings

	The tick label at each location.  Defaults to a formatted version
of the specified angles.



	fracnumber

	The radial location of the tick labels. 1.0 is the along the edge,
1.1 would be outside, and 0.9 would be inside.



	**kwargs

	Additional parameters are text properties for the labels.














	
set_longitude_grid(self, degrees)

	Set the number of degrees between each longitude grid.






	
set_longitude_grid_ends(self, value)

	Set the latitude(s) at which to stop drawing the longitude grids.






	
set_position(self, pos, which='both')

	Set the axes position.

Axes have two position attributes. The ‘original’ position is the
position allocated for the Axes. The ‘active’ position is the
position the Axes is actually drawn at. These positions are usually
the same unless a fixed aspect is set to the Axes. See .set_aspect
for details.


	Parameters

	
	pos[left, bottom, width, height] or ~matplotlib.transforms.Bbox

	The new position of the in .Figure coordinates.



	which{‘both’, ‘active’, ‘original’}, optional

	Determines which position variables to change.














	
set_rotation(self, rotation)

	Set the rotation of the stereonet in degrees clockwise from North.










	
mplstereonet.pole(strike, dip)

	Calculates the longitude and latitude of the pole(s) to the plane(s)
specified by strike and dip, given in degrees.


	Parameters

	
	strikenumber or sequence of numbers

	The strike of the plane(s) in degrees, with dip direction indicated by
the azimuth (e.g. 315 vs. 135) specified following the “right hand
rule”.



	dipnumber or sequence of numbers

	The dip of the plane(s) in degrees.







	Returns

	
	lon, latArrays of longitude and latitude in radians.

	












	
mplstereonet.plane(strike, dip, segments=100, center=(0, 0))

	Calculates the longitude and latitude of segments points along the
stereonet projection of each plane with a given strike and dip in
degrees.  Returns points for one hemisphere only.


	Parameters

	
	strikenumber or sequence of numbers

	The strike of the plane(s) in degrees, with dip direction indicated by
the azimuth (e.g. 315 vs. 135) specified following the “right hand
rule”.



	dipnumber or sequence of numbers

	The dip of the plane(s) in degrees.



	segmentsnumber or sequence of numbers

	The number of points in the returned lon and lat arrays.  Defaults
to 100 segments.



	centersequence of two numbers (lon, lat)

	The longitude and latitude of the center of the hemisphere that the
returned points will be in. Defaults to 0,0 (approriate for a typical
stereonet).







	Returns

	
	lon, latarrays

	num_segments x num_strikes arrays of longitude and latitude in
radians.














	
mplstereonet.line(plunge, bearing)

	Calculates the longitude and latitude of the linear feature(s) specified by
plunge and bearing.


	Parameters

	
	plungenumber or sequence of numbers

	The plunge of the line(s) in degrees. The plunge is measured in degrees
downward from the end of the feature specified by the bearing.



	bearingnumber or sequence of numbers

	The bearing (azimuth) of the line(s) in degrees.







	Returns

	
	lon, latArrays of longitude and latitude in radians.

	












	
mplstereonet.rake(strike, dip, rake_angle)

	Calculates the longitude and latitude of the linear feature(s) specified by
strike, dip, and rake_angle.


	Parameters

	
	strikenumber or sequence of numbers

	The strike of the plane(s) in degrees, with dip direction indicated by
the azimuth (e.g. 315 vs. 135) specified following the “right hand
rule”.



	dipnumber or sequence of numbers

	The dip of the plane(s) in degrees.



	rake_anglenumber or sequence of numbers

	The angle of the lineation on the plane measured in degrees downward
from horizontal. Zero degrees corresponds to the “right- hand”
direction indicated by the strike, while 180 degrees or a negative
angle corresponds to the opposite direction.







	Returns

	
	lon, latArrays of longitude and latitude in radians.

	












	
mplstereonet.plunge_bearing2pole(plunge, bearing)

	Converts the given plunge and bearing in degrees to a strike and dip
of the plane whose pole would be parallel to the line specified. (i.e. The
pole to the plane returned would plot at the same point as the specified
plunge and bearing.)


	Parameters

	
	plungenumber or sequence of numbers

	The plunge of the line(s) in degrees. The plunge is measured in degrees
downward from the end of the feature specified by the bearing.



	bearingnumber or sequence of numbers

	The bearing (azimuth) of the line(s) in degrees.







	Returns

	
	strike, diparrays

	Arrays of strikes and dips in degrees following the right-hand-rule.














	
mplstereonet.geographic2pole(lon, lat)

	Converts a longitude and latitude (from a stereonet) into the strike and dip
of the plane whose pole lies at the given longitude(s) and latitude(s).


	Parameters

	
	lonarray-like

	A sequence of longitudes (or a single longitude) in radians



	latarray-like

	A sequence of latitudes (or a single latitude) in radians







	Returns

	
	strikearray

	A sequence of strikes in degrees



	diparray

	A sequence of dips in degrees














	
mplstereonet.vector2plunge_bearing(x, y, z)

	Converts a vector or series of vectors given as x, y, z in world
coordinates into plunge/bearings.


	Parameters

	
	xnumber or sequence of numbers

	The x-component(s) of the normal vector



	ynumber or sequence of numbers

	The y-component(s) of the normal vector



	znumber or sequence of numbers

	The z-component(s) of the normal vector







	Returns

	
	plungearray

	The plunge of the vector in degrees downward from horizontal.



	bearingarray

	The bearing of the vector in degrees clockwise from north.














	
mplstereonet.geographic2plunge_bearing(lon, lat)

	Converts longitude and latitude in stereonet coordinates into a
plunge/bearing.


	Parameters

	
	lon, latnumbers or sequences of numbers

	Longitudes and latitudes in radians as measured from a
lower-hemisphere stereonet







	Returns

	
	plungearray

	The plunge of the vector in degrees downward from horizontal.



	bearingarray

	The bearing of the vector in degrees clockwise from north.














	
mplstereonet.density_grid(*args, **kwargs)

	Estimates point density of the given linear orientation measurements
(Interpreted as poles, lines, rakes, or “raw” longitudes and latitudes
based on the measurement keyword argument.). Returns a regular (in
lat-long space) grid of density estimates over a hemispherical surface.


	Parameters

	
	*args2 or 3 sequences of measurements

	By default, this will be expected to be strike & dip, both
array-like sequences representing poles to planes.  (Rake measurements
require three parameters, thus the variable number of arguments.) The
measurement kwarg controls how these arguments are interpreted.



	measurementstring, optional

	Controls how the input arguments are interpreted. Defaults to
"poles".  May be one of the following:



	"poles"strikes, dips

	Arguments are assumed to be sequences of strikes and dips of
planes. Poles to these planes are used for contouring.



	"lines"plunges, bearings

	Arguments are assumed to be sequences of plunges and bearings
of linear features.



	"rakes"strikes, dips, rakes

	Arguments are assumed to be sequences of strikes, dips, and
rakes along the plane.



	"radians"lon, lat

	Arguments are assumed to be “raw” longitudes and latitudes in
the stereonet’s underlying coordinate system.










	methodstring, optional

	The method of density estimation to use. Defaults to
"exponential_kamb". May be one of the following:


	"exponential_kamb"Kamb with exponential smoothing

	A modified Kamb method using exponential smoothing [1]. Units are
in numbers of standard deviations by which the density estimate
differs from uniform.



	"linear_kamb"Kamb with linear smoothing

	A modified Kamb method using linear smoothing [1].  Units are in
numbers of standard deviations by which the density estimate
differs from uniform.



	"kamb"Kamb with no smoothing

	Kamb’s method [2] with no smoothing. Units are in numbers of
standard deviations by which the density estimate differs from
uniform.



	"schmidt"1% counts

	The traditional “Schmidt” (a.k.a. 1%) method. Counts points within
a counting circle comprising 1% of the total area of the
hemisphere. Does not take into account sample size.  Units are in
points per 1% area.







	sigmaint or float, optional

	The number of standard deviations defining the expected number of
standard deviations by which a random sample from a uniform
distribution of points would be expected to vary from being evenly
distributed across the hemisphere.  This controls the size of the
counting circle, and therefore the degree of smoothing.  Higher sigmas
will lead to more smoothing of the resulting density distribution. This
parameter only applies to Kamb-based methods.  Defaults to 3.



	gridsizeint or 2-item tuple of ints, optional

	The size of the grid that the density is estimated on. If a single int
is given, it is interpreted as an NxN grid. If a tuple of ints is given
it is interpreted as (nrows, ncols).  Defaults to 100.



	weightsarray-like, optional

	The relative weight to be applied to each input measurement. The array
will be normalized to sum to 1, so absolute value of the weights do not
affect the result. Defaults to None.







	Returns

	
	xi, yi, zi2D arrays

	The longitude, latitude and density values of the regularly gridded
density estimates. Longitude and latitude are in radians.










See also


	mplstereonet.StereonetAxes.density_contourf

	

	mplstereonet.StereonetAxes.density_contour

	





References


	1(1,2)

	Vollmer, 1995. C Program for Automatic Contouring of Spherical
Orientation Data Using a Modified Kamb Method. Computers &
Geosciences, Vol. 21, No. 1, pp. 31–49.



	2

	Kamb, 1959. Ice Petrofabric Observations from Blue Glacier,
Washington, in Relation to Theory and Experiment. Journal of
Geophysical Research, Vol. 64, No. 11, pp. 1891–1909.










	
mplstereonet.plane_intersection(strike1, dip1, strike2, dip2)

	Finds the intersection of two planes. Returns a plunge/bearing of the linear
intersection of the two planes.

Also accepts sequences of strike1s, dip1s, strike2s, dip2s.


	Parameters

	
	strike1, dip1numbers or sequences of numbers

	The strike and dip (in degrees, following the right-hand-rule) of the
first plane(s).



	strike2, dip2numbers or sequences of numbers

	The strike and dip (in degrees, following the right-hand-rule) of the
second plane(s).







	Returns

	
	plunge, bearingarrays

	The plunge and bearing(s) (in degrees) of the line representing the
intersection of the two planes.














	
mplstereonet.xyz2stereonet(x, y, z)

	Converts x, y, z in _world_ cartesian coordinates into lower-hemisphere
stereonet coordinates.


	Parameters

	
	x, y, zarray-likes

	Sequences of world coordinates







	Returns

	
	lon, latarrays

	Sequences of longitudes and latitudes (in radians)














	
mplstereonet.stereonet2xyz(lon, lat)

	Converts a sequence of longitudes and latitudes from a lower-hemisphere
stereonet into _world_ x,y,z coordinates.


	Parameters

	
	lon, latarray-likes

	Sequences of longitudes and latitudes (in radians) from a
lower-hemisphere stereonet







	Returns

	
	x, y, zarrays

	The world x,y,z components of the vectors represented by the lon, lat
coordinates on the stereonet.














	
mplstereonet.vector2pole(x, y, z)

	Converts a vector or series of vectors given as x, y, z in world
coordinates into the strike/dip of the planes whose normal vectors are
parallel to the specified vectors.  (In other words, each xi,yi,zi is
treated as a normal vector and this returns the strike/dip of the
corresponding plane.)


	Parameters

	
	xnumber or sequence of numbers

	The x-component(s) of the normal vector



	ynumber or sequence of numbers

	The y-component(s) of the normal vector



	znumber or sequence of numbers

	The z-component(s) of the normal vector







	Returns

	
	strikearray

	The strike of the plane, in degrees clockwise from north.  Dip
direction is indicated by the “right hand rule”.



	diparray

	The dip of the plane, in degrees downward from horizontal.














	
mplstereonet.antipode(lon, lat)

	Calculates the antipode (opposite point on the globe) of the given point or
points. Input and output is expected to be in radians.


	Parameters

	
	lonnumber or sequence of numbers

	Longitude in radians



	latnumber or sequence of numbers

	Latitude in radians







	Returns

	
	lon, latarrays

	Sequences (regardless of whether or not the input was a single value or
a sequence) of longitude and latitude in radians.














	
mplstereonet.project_onto_plane(strike, dip, plunge, bearing)

	Projects a linear feature(s) onto the surface of a plane. Returns a rake
angle(s) along the plane.

This is also useful for finding the rake angle of a feature that already
intersects the plane in question.


	Parameters

	
	strike, dipnumbers or sequences of numbers

	The strike and dip (in degrees, following the right-hand-rule) of the
plane(s).



	plunge, bearingnumbers or sequences of numbers

	The plunge and bearing (in degrees) or of the linear feature(s) to be
projected onto the plane.







	Returns

	
	rakearray

	A sequence of rake angles measured downwards from horizontal in
degrees.  Zero degrees corresponds to the “right- hand” direction
indicated by the strike, while a negative angle corresponds to the
opposite direction. Rakes returned by this function will always be
between -90 and 90 (inclusive).














	
mplstereonet.azimuth2rake(strike, dip, azimuth)

	Projects an azimuth of a linear feature onto a plane as a rake angle.


	Parameters

	
	strike, dipnumbers

	The strike and dip of the plane in degrees following the
right-hand-rule.



	azimuthnumbers

	The azimuth of the linear feature in degrees clockwise from north (i.e.
a 0-360 azimuth).







	Returns

	
	rakenumber

	A rake angle in degrees measured downwards from horizontal.  Negative
values correspond to the opposite end of the strike.














	
mplstereonet.parse_azimuth(azimuth)

	Parses an azimuth measurement in azimuth or quadrant format.


	Parameters

	
	azimuthstring or number

	An azimuth measurement in degrees or a quadrant measurement of azimuth.







	Returns

	
	azifloat

	The azimuth in degrees clockwise from north (range: 0-360)










See also


	parse_quadrant_measurement

	

	parse_strike_dip

	

	parse_plunge_bearing

	










	
mplstereonet.parse_quadrant_measurement(quad_azimuth)

	Parses a quadrant measurement of the form “AxxB”, where A and B are cardinal
directions and xx is an angle measured relative to those directions.

In other words, it converts a measurement such as E30N into an azimuth of
60 degrees, or W10S into an azimuth of 260 degrees.

For ambiguous quadrant measurements such as “N30S”, a ValueError is raised.


	Parameters

	
	quad_azimuthstring

	An azimuth measurement in quadrant form.







	Returns

	
	azifloat

	An azimuth in degrees clockwise from north.










See also


	parse_azimuth

	










	
mplstereonet.parse_strike_dip(strike, dip)

	Parses strings of strike and dip and returns strike and dip measurements
following the right-hand-rule.

Dip directions are parsed, and if the measurement does not follow the
right-hand-rule, the opposite end of the strike measurement is returned.

Accepts either quadrant-formatted or azimuth-formatted strikes.

For example, this would convert a strike of “N30E” and a dip of “45NW” to
a strike of 210 and a dip of 45.


	Parameters

	
	strikestring

	A strike measurement. May be in azimuth or quadrant format.



	dipstring

	The dip angle and direction of a plane.







	Returns

	
	azifloat

	Azimuth in degrees of the strike of the plane with dip direction
indicated following the right-hand-rule.



	dipfloat

	Dip of the plane in degrees.














	
mplstereonet.parse_rake(strike, dip, rake)

	Parses strings of strike, dip, and rake and returns a strike, dip, and rake
measurement following the right-hand-rule, with the “end” of the strike
that the rake is measured from indicated by the sign of the rake (positive
rakes correspond to the strike direction, negative rakes correspond to the
opposite end).

Accepts either quadrant-formatted or azimuth-formatted strikes.

For example, this would convert a strike of “N30E”, dip of “45NW”, with a
rake of “10NE” to a strike of 210, dip of 45, and rake of 170.

Rake angles returned by this function will always be between 0 and 180

If no directions are specified, the measuriement is assumed to follow the
usual right-hand-rule convention.


	Parameters

	
	strikestring

	A strike measurement. May be in azimuth or quadrant format.



	dipstring

	The dip angle and direction of a plane.



	rakestring

	The rake angle and direction that the rake is measured from.







	Returns

	
	strike, dip, rakefloats

	Measurements of strike, dip, and rake following the conventions
outlined above.














	
mplstereonet.parse_plunge_bearing(plunge, bearing)

	Parses strings of plunge and bearing and returns a consistent plunge and
bearing measurement as floats. Plunge angles returned by this function will
always be between 0 and 90.

If no direction letter(s) is present, the plunge is assumed to be measured
from the end specified by the bearing. If a direction letter(s) is present,
the bearing will be switched to the opposite (180 degrees) end if the
specified direction corresponds to the opposite end specified by the
bearing.


	Parameters

	
	plungestring

	A plunge measurement.



	bearingstring

	A bearing measurement. May be in azimuth or quadrant format.







	Returns

	
	plunge, bearing: floats

	The plunge and bearing following the conventions outlined above.









Examples

>>> parse_plunge_bearing("30NW", 160)
... (30, 340)










	
mplstereonet.subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, subplot_kw=None, hemisphere='lower', projection='equal_area', **fig_kw)

	Identical to matplotlib.pyplot.subplots, except that this will default to
producing equal-area stereonet axes.

This prevents constantly doing:

>>> fig, ax = plt.subplot(subplot_kw=dict(projection='stereonet'))





or

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111, projection='stereonet')





Using this function also avoids having mplstereonet continually appear
to be an unused import when one of the above methods are used.


	Parameters

	
	nrowsint

	Number of rows of the subplot grid.  Defaults to 1.



	ncolsint

	Number of columns of the subplot grid.  Defaults to 1.



	hemispherestring

	Currently this has no effect. When upper hemisphere and dual
hemisphere plots are implemented, this will control which hemisphere
is displayed.



	projectionstring

	The projection for the axes. Defaults to ‘equal_area’–an equal-area
(a.k.a. “Schmidtt”) stereonet. May also be ‘equal_angle’ for an
equal-angle (a.k.a. “Wulff”) stereonet or any other valid matplotlib
projection (e.g. ‘polar’ or ‘rectilinear’ for a “normal” axes).



	The following parameters are identical to matplotlib.pyplot.subplots:

	

	sharexstring or bool

	If True, the X axis will be shared amongst all subplots.  If
True and you have multiple rows, the x tick labels on all but
the last row of plots will have visible set to False
If a string must be one of “row”, “col”, “all”, or “none”.
“all” has the same effect as True, “none” has the same effect
as False.
If “row”, each subplot row will share a X axis.
If “col”, each subplot column will share a X axis and the x tick
labels on all but the last row will have visible set to False.



	shareystring or bool

	If True, the Y axis will be shared amongst all subplots. If
True and you have multiple columns, the y tick labels on all but
the first column of plots will have visible set to False
If a string must be one of “row”, “col”, “all”, or “none”.
“all” has the same effect as True, “none” has the same effect
as False.
If “row”, each subplot row will share a Y axis.
If “col”, each subplot column will share a Y axis and the y tick
labels on all but the last row will have visible set to False.



	*squeeze*bool

	
If True, extra dimensions are squeezed out from the
returned axis object:


	if only one subplot is constructed (nrows=ncols=1), the
resulting single Axis object is returned as a scalar.


	for Nx1 or 1xN subplots, the returned object is a 1-d numpy
object array of Axis objects are returned as numpy 1-d
arrays.


	for NxM subplots with N>1 and M>1 are returned as a 2d
array.








	If False, no squeezing at all is done: the returned axis

	object is always a 2-d array contaning Axis instances, even if it
ends up being 1x1.







	*subplot_kw*dict

	Dict with keywords passed to the
add_subplot() call used to
create each subplots.



	*fig_kw*dict

	Dict with keywords passed to the figure() call.  Note that all
keywords not recognized above will be automatically included here.







	Returns

	
	fig, axtuple

	
	fig is the matplotlib.figure.Figure object


	
	ax can be either a single axis object or an array of axis

	objects if more than one supblot was created.  The dimensions
of the resulting array can be controlled with the squeeze
keyword, see above.






















	
mplstereonet.pole2plunge_bearing(strike, dip)

	Converts the given strike and dip in dgrees of a plane(s) to a plunge
and bearing of its pole.


	Parameters

	
	strikenumber or sequence of numbers

	The strike of the plane(s) in degrees, with dip direction indicated by
the azimuth (e.g. 315 vs. 135) specified following the “right hand
rule”.



	dipnumber or sequence of numbers

	The dip of the plane(s) in degrees.







	Returns

	
	plunge, bearingarrays

	Arrays of plunges and bearings of the pole to the plane(s) in degrees.














	
mplstereonet.fit_girdle(*args, **kwargs)

	Fits a plane to a scatter of points on a stereonet (a.k.a. a “girdle”).

Input arguments will be interpreted as poles, lines, rakes, or “raw”
longitudes and latitudes based on the measurement keyword argument.
(Defaults to "poles".)


	Parameters

	
	*args2 or 3 sequences of measurements

	By default, this will be expected to be strikes & dips, both
array-like sequences representing poles to planes.  (Rake measurements
require three parameters, thus the variable number of arguments.) The
measurement kwarg controls how these arguments are interpreted.



	measurement{‘poles’, ‘lines’, ‘rakes’, ‘radians’}, optional

	Controls how the input arguments are interpreted. Defaults to
"poles".  May be one of the following:



	"poles"Arguments are assumed to be sequences of strikes and

	dips of planes. Poles to these planes are used for density
contouring.



	"lines"Arguments are assumed to be sequences of plunges and

	bearings of linear features.



	"rakes"Arguments are assumed to be sequences of strikes,

	dips, and rakes along the plane.



	"radians"Arguments are assumed to be “raw” longitudes and

	latitudes in the underlying projection’s coordinate system.










	bidirectionalboolean, optional

	Whether or not the antipode of each measurement will be used in the
calculation. For almost all use cases, it should. Defaults to True.







	Returns

	
	strike, dip: floats

	The strike and dip of the plane.









Notes

The pole to the best-fit plane is extracted by calculating the smallest
eigenvector of the covariance matrix of the input measurements in cartesian
3D space.

Examples

Calculate the plunge of a cylindrical fold axis from a series of strike/dip
measurements of bedding from the limbs:

>>> strike = [270, 334, 270, 270]
>>> dip = [20, 15, 80, 78]
>>> s, d = mplstereonet.fit_girdle(strike, dip)
>>> plunge, bearing = mplstereonet.pole2plunge_bearing(s, d)










	
mplstereonet.fit_pole(*args, **kwargs)

	Fits the pole to a plane to a “bullseye” of points on a stereonet.

Input arguments will be interpreted as poles, lines, rakes, or “raw”
longitudes and latitudes based on the measurement keyword argument.
(Defaults to "poles".)


	Parameters

	
	*args2 or 3 sequences of measurements

	By default, this will be expected to be strike & dip, both
array-like sequences representing poles to planes.  (Rake measurements
require three parameters, thus the variable number of arguments.) The
measurement kwarg controls how these arguments are interpreted.



	measurement{‘poles’, ‘lines’, ‘rakes’, ‘radians’}, optional

	Controls how the input arguments are interpreted. Defaults to
"poles".  May be one of the following:



	"poles"Arguments are assumed to be sequences of strikes and

	dips of planes. Poles to these planes are used for density
contouring.



	"lines"Arguments are assumed to be sequences of plunges and

	bearings of linear features.



	"rakes"Arguments are assumed to be sequences of strikes,

	dips, and rakes along the plane.



	"radians"Arguments are assumed to be “raw” longitudes and

	latitudes in the underlying projection’s coordinate system.










	bidirectionalboolean, optional

	Whether or not the antipode of each measurement will be used in the
calculation. For almost all use cases, it should. Defaults to True.







	Returns

	
	strike, dip: floats

	The strike and dip of the plane.









Notes

The pole to the best-fit plane is extracted by calculating the largest
eigenvector of the covariance matrix of the input measurements in cartesian
3D space.

Examples

Find the average strike/dip of a series of bedding measurements

>>> strike = [270, 65, 280, 300]
>>> dip = [20, 15, 10, 5]
>>> strike0, dip0 = mplstereonet.fit_pole(strike, dip)










	
mplstereonet.eigenvectors(*args, **kwargs)

	Finds the 3 eigenvectors and eigenvalues of the 3D covariance matrix of a
series of geometries.  This can be used to fit a plane/pole to a dataset or
for shape fabric analysis (e.g. Flinn/Hsu plots).

Input arguments will be interpreted as poles, lines, rakes, or “raw”
longitudes and latitudes based on the measurement keyword argument.
(Defaults to "poles".)


	Parameters

	
	*args2 or 3 sequences of measurements

	By default, this will be expected to be strike & dip, both
array-like sequences representing poles to planes.  (Rake measurements
require three parameters, thus the variable number of arguments.) The
measurement kwarg controls how these arguments are interpreted.



	measurement{‘poles’, ‘lines’, ‘rakes’, ‘radians’}, optional

	Controls how the input arguments are interpreted. Defaults to
"poles".  May be one of the following:



	"poles"Arguments are assumed to be sequences of strikes and

	dips of planes. Poles to these planes are used for density
contouring.



	"lines"Arguments are assumed to be sequences of plunges and

	bearings of linear features.



	"rakes"Arguments are assumed to be sequences of strikes,

	dips, and rakes along the plane.



	"radians"Arguments are assumed to be “raw” longitudes and

	latitudes in the underlying projection’s coordinate system.










	bidirectionalboolean, optional

	Whether or not the antipode of each measurement will be used in the
calculation. For almost all use cases, it should. Defaults to True.







	Returns

	
	plunges, bearings, valuessequences of 3 floats each

	The plunges, bearings, and eigenvalues of the three eigenvectors of the
covariance matrix of the input data.  The measurements are returned
sorted in descending order relative to the eigenvalues. (i.e. The
largest eigenvector/eigenvalue is first.)









Examples

Find the eigenvectors as plunge/bearing and eigenvalues of the 3D
covariance matrix of a series of planar measurements:

>>> strikes = [270, 65, 280, 300]
>>> dips = [20, 15, 10, 5]
>>> plu, azi, vals = mplstereonet.eigenvectors(strikes, dips)










	
mplstereonet.kmeans(*args, **kwargs)

	Find centers of multi-modal clusters of data using a kmeans approach
modified for spherical measurements.


	Parameters

	
	*args2 or 3 sequences of measurements

	By default, this will be expected to be strike & dip, both
array-like sequences representing poles to planes.  (Rake measurements
require three parameters, thus the variable number of arguments.) The
measurement kwarg controls how these arguments are interpreted.



	numint

	The number of clusters to find. Defaults to 2.



	bidirectionalbool

	Whether or not the measurements are bi-directional linear/planar
features or directed vectors. Defaults to True.



	tolerancefloat

	Iteration will continue until the centers have not changed by more
than this amount. Defaults to 1e-5.



	measurementstring, optional

	Controls how the input arguments are interpreted. Defaults to
"poles".  May be one of the following:



	"poles"strikes, dips

	Arguments are assumed to be sequences of strikes and dips of
planes. Poles to these planes are used for analysis.



	"lines"plunges, bearings

	Arguments are assumed to be sequences of plunges and bearings
of linear features.



	"rakes"strikes, dips, rakes

	Arguments are assumed to be sequences of strikes, dips, and
rakes along the plane.



	"radians"lon, lat

	Arguments are assumed to be “raw” longitudes and latitudes in
the stereonet’s underlying coordinate system.














	Returns

	
	centersAn Nx2 array-like

	Longitude and latitude in radians of the centers of each cluster.














	
mplstereonet.find_mean_vector(*args, **kwargs)

	Returns the mean vector for a set of measurments. By default, this expects
the input to be plunges and bearings, but the type of input can be
controlled through the measurement kwarg.


	Parameters

	
	*args2 or 3 sequences of measurements

	By default, this will be expected to be plunge & bearing, both
array-like sequences representing linear features.  (Rake measurements
require three parameters, thus the variable number of arguments.) The
measurement kwarg controls how these arguments are interpreted.



	measurementstring, optional

	Controls how the input arguments are interpreted. Defaults to
"lines".  May be one of the following:



	"poles"strikes, dips

	Arguments are assumed to be sequences of strikes and dips of
planes. Poles to these planes are used for analysis.



	"lines"plunges, bearings

	Arguments are assumed to be sequences of plunges and bearings
of linear features.



	"rakes"strikes, dips, rakes

	Arguments are assumed to be sequences of strikes, dips, and
rakes along the plane.



	"radians"lon, lat

	Arguments are assumed to be “raw” longitudes and latitudes in
the stereonet’s underlying coordinate system.














	Returns

	
	mean_vectortuple of two floats

	The plunge and bearing of the mean vector (in degrees).



	r_valuefloat

	The length of the mean vector (a value between 0 and 1).














	
mplstereonet.find_fisher_stats(*args, **kwargs)

	Returns the mean vector and summary statistics for a set of measurements.
By default, this expects the input to be plunges and bearings, but the type
of input can be controlled through the measurement kwarg.


	Parameters

	
	*args2 or 3 sequences of measurements

	By default, this will be expected to be plunge & bearing, both
array-like sequences representing linear features.  (Rake measurements
require three parameters, thus the variable number of arguments.) The
measurement kwarg controls how these arguments are interpreted.



	confnumber

	The confidence level (0-100). Defaults to 95%, similar to 2 sigma.



	measurementstring, optional

	Controls how the input arguments are interpreted. Defaults to
"lines".  May be one of the following:



	"poles"strikes, dips

	Arguments are assumed to be sequences of strikes and dips of
planes. Poles to these planes are used for analysis.



	"lines"plunges, bearings

	Arguments are assumed to be sequences of plunges and bearings
of linear features.



	"rakes"strikes, dips, rakes

	Arguments are assumed to be sequences of strikes, dips, and
rakes along the plane.



	"radians"lon, lat

	Arguments are assumed to be “raw” longitudes and latitudes in
the stereonet’s underlying coordinate system.














	Returns

	
	mean_vector: tuple of two floats

	A set consisting of the plunge and bearing of the mean vector (in
degrees).



	statstuple of three floats

	(r_value, confidence, kappa)
The r_value is the magnitude of the mean vector as a number between
0 and 1.
The confidence radius is the opening angle of a small circle that
corresponds to the confidence in the calculated direction, and is
dependent on the input conf.
The kappa value is the dispersion factor that quantifies the amount
of dispersion of the given vectors, analgous to a variance/stddev.














	
mplstereonet.angular_distance(first, second, bidirectional=True)

	Calculate the angular distance between two linear features or elementwise
angular distance between two sets of linear features. (Note: a linear
feature in this context is a point on a stereonet represented
by a single latitude and longitude.)


	Parameters

	
	first(lon, lat) 2xN array-like or sequence of two numbers

	The longitudes and latitudes of the first measurements in radians.



	second(lon, lat) 2xN array-like or sequence of two numbers

	The longitudes and latitudes of the second measurements in radians.



	bidirectionalboolean

	If True, only “inner” angles will be returned. In other words, all
angles returned by this function will be in the range [0, pi/2]
(0 to 90 in degrees).  Otherwise, first and second
will be treated as vectors going from the origin outwards
instead of bidirectional infinite lines.  Therefore, with
bidirectional=False, angles returned by this function
will be in the range [0, pi] (zero to 180 degrees).







	Returns

	
	distarray

	The elementwise angular distance between each pair of measurements in
(lon1, lat1) and (lon2, lat2).









Examples

Calculate the angle between two lines specified as a plunge/bearing

>>> angle = angular_distance(line(30, 270), line(40, 90))
>>> np.degrees(angle)
array([ 70.])





Let’s do the same, but change the “bidirectional” argument:

>>> first, second = line(30, 270), line(40, 90)
>>> angle = angular_distance(first, second, bidirectional=False)
>>> np.degrees(angle)
array([ 110.])





Calculate the angle between two planes.

>>> angle = angular_distance(pole(0, 10), pole(180, 10))
>>> np.degrees(angle)
array([ 20.])









#    :undoc-members:







          

      

      

    

  

    
      
          
            

   Python Module Index


   
   m
   


   
     		 	

     		
       m	

     
       	
       	
       mplstereonet	
       

   



          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | C
 | D
 | E
 | F
 | G
 | K
 | L
 | M
 | P
 | R
 | S
 | V
 | X
 


_


  	
      	__init__() (mplstereonet.StereonetAxes method)


  





A


  	
      	angular_distance() (in module mplstereonet)


  

  	
      	antipode() (in module mplstereonet)


      	azimuth2rake() (in module mplstereonet)


  





C


  	
      	cla() (mplstereonet.StereonetAxes method)


  

  	
      	cone() (mplstereonet.StereonetAxes method)


  





D


  	
      	density_contour() (mplstereonet.StereonetAxes method)


  

  	
      	density_contourf() (mplstereonet.StereonetAxes method)


      	density_grid() (in module mplstereonet)


  





E


  	
      	eigenvectors() (in module mplstereonet)


  





F


  	
      	find_fisher_stats() (in module mplstereonet)


      	find_mean_vector() (in module mplstereonet)


  

  	
      	fit_girdle() (in module mplstereonet)


      	fit_pole() (in module mplstereonet)


      	format_coord() (mplstereonet.StereonetAxes method)


  





G


  	
      	geographic2plunge_bearing() (in module mplstereonet)


      	geographic2pole() (in module mplstereonet)


  

  	
      	get_azimuth_ticklabels() (mplstereonet.StereonetAxes method)


      	get_rotation() (mplstereonet.StereonetAxes method)


      	grid() (mplstereonet.StereonetAxes method)


  





K


  	
      	kmeans() (in module mplstereonet)


  





L


  	
      	line() (in module mplstereonet)

      
        	(mplstereonet.StereonetAxes method)


      


  





M


  	
      	mplstereonet (module)


  





P


  	
      	parse_azimuth() (in module mplstereonet)


      	parse_plunge_bearing() (in module mplstereonet)


      	parse_quadrant_measurement() (in module mplstereonet)


      	parse_rake() (in module mplstereonet)


      	parse_strike_dip() (in module mplstereonet)


      	plane() (in module mplstereonet)

      
        	(mplstereonet.StereonetAxes method)


      


  

  	
      	plane_intersection() (in module mplstereonet)


      	plunge_bearing2pole() (in module mplstereonet)


      	pole() (in module mplstereonet)

      
        	(mplstereonet.StereonetAxes method)


      


      	pole2plunge_bearing() (in module mplstereonet)


      	project_onto_plane() (in module mplstereonet)


  





R


  	
      	rake() (in module mplstereonet)

      
        	(mplstereonet.StereonetAxes method)


      


  

  	
      	rotation (mplstereonet.StereonetAxes attribute)


  





S


  	
      	set_azimuth_ticklabels() (mplstereonet.StereonetAxes method)


      	set_azimuth_ticks() (mplstereonet.StereonetAxes method)


      	set_longitude_grid() (mplstereonet.StereonetAxes method)


      	set_longitude_grid_ends() (mplstereonet.StereonetAxes method)


  

  	
      	set_position() (mplstereonet.StereonetAxes method)


      	set_rotation() (mplstereonet.StereonetAxes method)


      	stereonet2xyz() (in module mplstereonet)


      	StereonetAxes (class in mplstereonet)


      	subplots() (in module mplstereonet)


  





V


  	
      	vector2plunge_bearing() (in module mplstereonet)


  

  	
      	vector2pole() (in module mplstereonet)


  





X


  	
      	xyz2stereonet() (in module mplstereonet)


  







          

      

      

    

  _static/examples/fisher_stats_0.png
Mean Vector p/B:- 57°/144°
Confidence: 95%

@ Fisher Angle: 2730
RValue 0991
Kvalue: 108.93

Bt

270°

180°





_static/examples/fit_girdle_example_0.png





_static/examples/equal_area_equal_angle_comparison_0.png
Equal Area (a.ka. "Schmidt”) Equal Angle (a.k a. "Wulff")

Comparison of Equal Area and Equal Angle Stereonets
Same Data Plotted on Both





_static/examples/fault_slip_plot_0.png
Fault-and-Striae Diagram Tangent Lineation Diagram

—
r
Lineation direction plotted Lineation direction plotted
at rake location on plane at pole location of plane.

Faultslip data from Angelier, 1979





_images/contouring.png
270°

180°





_static/examples/parse_angelier_data_0.png
180°





_images/contouring_0.png
o

120

105

15

00

180°





_static/examples/plane_intersection_0.png
180°





_images/contour_angelier_data_0.png
Linear Exponential
smoothing  Smoothing

E=30 Contours: 20, 4, Schmidt
E=20 Contours: 10, 30, Contours: 3%,6%,

%)%

£=10 Contours: 10, 30,





_static/examples/kmeans_example_0.png
strike/dip of conjugate fault sets
*

180°





_images/contour_normal_vectors_0.png
180°





_static/examples/multiple_planes_0.png





_images/fault_slip_plot_0.png
Fault-and-Striae Diagram Tangent Lineation Diagram

—
r
Lineation direction plotted Lineation direction plotted
at rake location on plane at pole location of plane.

Faultslip data from Angelier, 1979





_images/fisher_stats_0.png
Mean Vector p/B:- 57°/144°
Confidence: 95%

@ Fisher Angle: 2730
RValue 0991
Kvalue: 108.93

Bt

270°

180°





_images/cross_section_plane_0.png
180°





_static/examples/polar_overlay_0.png
Polar overlay on a Stereonet

180°





_images/equal_area_equal_angle_comparison_0.png
Equal Area (a.ka. "Schmidt”) Equal Angle (a.k a. "Wulff")

Comparison of Equal Area and Equal Angle Stereonets
Same Data Plotted on Both





_static/examples/polar_overlay_1.png
Arbitrary overlay on a Stereonet






_images/fit_girdle_example_0.png





_images/kmeans_example_0.png
strike/dip of conjugate fault sets
*

180°





_images/basic_0.png
180°





_images/cone_aka_small_circle_0.png
%0°

180°





_images/axial_plane_0.png





_images/basic.png
0°

270° 90°

180°





_images/contour_angelier_data.png
Linear Exponential

Smoothing Smoothing
@
E=30 Contours: 20,40,... Schmidt
[E=20 Contours: 15,3c... Contours: 3%,6%,..

%) (%) (%) ()

E=10 Contours: 10,37,..





_static/examples/two_point_0.png





_images/multiple_planes_0.png





nav.xhtml

    
      Table of Contents


      
        		
          mplstereonet
        


        		
          Examples
          
            		
              axial_plane.py
              
                		
                  Result
                


              


            


            		
              basic.py
              
                		
                  Result
                


              


            


            		
              cone_aka_small_circle.py
              
                		
                  Result
                


              


            


            		
              contour_angelier_data.py
              
                		
                  Result
                


              


            


            		
              contour_normal_vectors.py
              
                		
                  Result
                


              


            


            		
              contouring.py
              
                		
                  Result
                


              


            


            		
              cross_section_plane.py
              
                		
                  Result
                


              


            


            		
              equal_area_equal_angle_comparison.py
              
                		
                  Result
                


              


            


            		
              fault_slip_plot.py
              
                		
                  Result
                


              


            


            		
              fisher_stats.py
              
                		
                  Reference
                


                		
                  Result
                


              


            


            		
              fit_girdle_example.py
              
                		
                  Result
                


              


            


            		
              kmeans_example.py
              
                		
                  Result
                


              


            


            		
              multiple_planes.py
              
                		
                  Result
                


              


            


            		
              parse_angelier_data.py
              
                		
                  Result
                


              


            


            		
              parsing_example.py
              
                		
                  Result
                


              


            


            		
              plane_intersection.py
              
                		
                  Result
                


              


            


            		
              polar_overlay.py
              
                		
                  Result
                


              


            


            		
              rotation_example.py
              
                		
                  Result
                


              


            


            		
              scatter.py
              
                		
                  Result
                


              


            


            		
              stereonet_explanation.py
              
                		
                  Result
                


              


            


            		
              two_point.py
              
                		
                  Result
                


              


            


          


        


        		
          mplstereonet Package
          
            		
              mplstereonet Package
            


          


        


      


    
  

_static/examples/scatter_0.png





_static/examples/stereonet_explanation_0.png
290°

280°

10°

20° 30° 40" 50° 60°

West

Dip and Azimuth

North

3500 100

70" 8o 70°

190°Dip or Plunge170°

60°

s0°

a0°

30°

20°

10°

700

s0°

East

1000

1100

Longitude and Latitude

700

200

100

-80° -70° -60°

-50° -40° -30°

o

00

200

700

s0°

200

800

10°

Longitude

20°

30°

40°

s0°

60°

70°

80°






_images/polar_overlay_0.png
Polar overlay on a Stereonet

180°





_images/9840245beb2902c9a89e32b76913b2d2c166ecf3.png
Equal Area (a.k.a. "Schmidt") Equal Angle (a.k.a. "Wulff")

Comparison of Equal Area and Equal Angle Stereonets
Same Data Plotted on Both





_images/polar_overlay_1.png
Arbitrary overlay on a Stereonet






_images/parse_angelier_data_0.png
180°





_images/plane_intersection_0.png
180°





_images/stereonet_explanation_0.png
290°

280°

10°

20° 30° 40" 50° 60°

West

Dip and Azimuth

North

3500 100

70" 8o 70°

190°Dip or Plunge170°

60°

s0°

a0°

30°

20°

10°

700

s0°

East

1000

1100

Longitude and Latitude

700

200

100

-80° -70° -60°

-50° -40° -30°

o

00

200

700

s0°

200

800

10°

Longitude

20°

30°

40°

s0°

60°

70°

80°






_images/two_point_0.png





_images/rotation_example_0.png
1350





_images/scatter_0.png





_static/ajax-loader.gif





_static/examples/rotation_example_0.png
1350





_static/comment-bright.png





_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





_static/minus.png





_static/plus.png





_static/file.png





_static/up-pressed.png





_static/up.png





_static/examples/cone_aka_small_circle_0.png
%0°

180°





_static/examples/contour_angelier_data_0.png
Linear Exponential
smoothing  Smoothing

E=30 Contours: 20, 4, Schmidt
E=20 Contours: 10, 30, Contours: 3%,6%,

%)%

£=10 Contours: 10, 30,





_static/examples/axial_plane_0.png





_static/examples/basic_0.png
180°





_static/examples/cross_section_plane_0.png
180°





_static/examples/contour_normal_vectors_0.png
180°





_static/examples/contouring_0.png
o

120

105

15

00

180°





